
Chapter 4
Deep Learning and Its Applications
to Natural Language Processing

Haiqin Yang, Linkai Luo, Lap Pong Chueng, David Ling, and Francis Chin

Abstract Natural language processing (NLP), utilizing computer programs to pro-
cess large amounts of language data, is a key research area in artificial intelligence
and computer science. Deep learning technologies have been well developed and
applied in this area. However, the literature still lacks a succinct survey, which would
allow readers to get a quick understanding of (1) how the deep learning technologies
apply to NLP and (2) what the promising applications are. In this survey, we try
to investigate the recent developments of NLP, centered around natural language
understanding, to answer these two questions. First, we explore the newly developed
word embedding or word representation methods. Then, we describe two powerful
learning models, Recurrent Neural Networks and Convolutional Neural Networks.
Next, we outline five key NLP applications, including (1) part-of-speech tagging
and named entity recognition, two fundamental NLP applications; (2) machine
translation and automatic English grammatical error correction, two applications
with prominent commercial value; and (3) image description, an application
requiring technologies of both computer vision and NLP. Moreover, we present a
series of benchmark datasets which would be useful for researchers to evaluate the
performance of models in the related applications.
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4.1 Introduction

Deep learning has revived neural networks and artificial intelligence technologies
to effectively learn data representation from the original data (LeCun et al. 2015;
Goodfellow et al. 2016). Excellent performance has been reported in speech
recognition (Graves et al. 2013) and computer vision (Krizhevsky et al. 2017). Now,
much effort has now turned to the area of natural language processing.

Natural language processing (NLP), utilizing computer programs to process
large amounts of language data, is a key research area in artificial intelligence and
computer science. Challenges of NLP include speech recognition, natural language
understanding, and natural language generation. Though much effort has been
devoted in this area, the literature still lacks a succinct survey, which would allow
readers to get a quick understanding of how the deep learning technologies apply to
NLP and what the interesting applications are.

In this survey, we try to investigate recent development of NLP to answer the
above two questions. We mainly focus on the topics that tackle the challenge of
natural language understanding. We will divide the introduction into the following
three aspects:

– summarizing the neural language models to learn word vector representations,
including Word2vec and Glove (Mikolov et al. 2013a,b; Pennington et al. 2014),

– introducing the powerful tools of the recurrent neural networks (RNNs) (Elman
1990; Chung et al. 2014; Hochreiter and Schmidhuber 1997) and the convolu-
tional neural networks (CNNs) (Kim 2014; dos Santos and Gatti 2014; Gehring
et al. 2017), for language models to capture dependencies in languages. More
specifically, we will introduce two popular extensions of RNNs, i.e., the long
short-term memory (LSMT) (Hochreiter and Schmidhuber 1997) network and
the Gated Recurrent Unit (GRU) (Chung et al. 2014) network, and briefly discuss
the efficiency of CNNs for NLP.

– outlining and sketching the development of five key NLP applications, including
part-of-speech (POS) tagging (Collobert et al. 2011; Toutanova et al. 2003),
named entity recognition (NER) (Collobert et al. 2011; Florian et al. 2003),
machine translation (Bahdanau et al. 2014; Sutskever et al. 2014), automatic
English grammatical error correction (Bhirud et al. 2017; Hoang et al. 2016;
Manchanda et al. 2016; Ng et al. 2014), and image description (Bernardi et al.
2016; Hodosh et al. 2013; Karpathy and Fei-Fei 2017).

Finally, we present a series of benchmark datasets which are popularly applied
in the above models and applications, while concluding the whole article with some
discussions. We hope this short review of the recent progress of NLP can help
researchers new to the area to quickly enter this field.
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4.2 Learning Word Representations

A critical issue of NLP is to effectively represent the features from the origi-
nal text data. Traditionally, the numerical statistics, such as term frequency or
term frequency inverse document frequency (tf-idf), are utilized to determine the
importance of a word. However, in NLP, the goal is to extract the semantic
meaning from the given corpus. In the following, we will introduce the state-of-
the-art word embedding methods, including word2vec (Mikolov et al. 2013a) and
Glove (Pennington et al. 2014).

Word embeddings (or word representations) are arguably the most widely known
technique in the recent history of NLP. Formally, a word embedding or a word
representation is represented as a vector of real numbers for each word in the
vocabulary. There are various approaches to learn word embeddings, which force
similar words to be as close as possible in the semantic space. Among them
word2vec and Glove have attracted a great amount of attention in recent 4 years.
These two methods are based on the distributional hypothesis (Harris 1954), where
words appearing in similar contexts tend to have similar meaning, and the concept
that one can know a word by the company it keeps (Firth 1957).

Word2vec (Mikolov et al. 2013a) is not a new concept; however, it gained pop-
ularity only after two important papers Mikolov et al. (2013a,b) were published
in 2013. Word2vec models are constructed by shallow (only two-layer) feedfor-
ward neural networks to reconstruct linguistic contexts of words. The networks
are fed a large corpus of text and then produce a vector space that is shown to
carry the semantic meanings. In Mikolov et al. (2013a), two wor2vec models,
i.e., Continuous Bag of Words (CBOW) and skip-gram, are introduced. In
CBOW, the word embeddings is constructed through a supervised deep learning
approach by considering the fake learning task of predicting a word by its
surrounding context, which is usually restricted to a small window of words.
In skip-gram, the model utilizes the current word to predict its surrounding
context words. Both approaches take the value of the vector of a fixed-size inner
layer as the embedding. Note that the order of context words does not influence
the prediction in both settings. According to Mikolov et al. (2013a), CBOW
trains faster than skip-gram, but skip-gram does better job in detecting infrequent
words.

One main issue of word2vec is the high computational cost due to the
huge amount of corpora. In Mikolov et al. (2013b), hierarchical softmax and
negative sampling are proposed to address the computational issue. Moreover,
to enhance computational efficiency, several tricks are adopted: including (1)
eliminating most frequent words such as “a”, “the”, and etc., as they provide
less informational value than rare words; and (2) learning common phrases and
treating them as single words, e.g., “‘New York” is replaced by “New_York”.
More details about the algorithms and the tricks can be found in Rong (2014).
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An implementation of word2vec in C language is available in the Google Code
Archive1 and its Python version can be downloaded in gensim.2

Glove (Pennington et al. 2014) is based on the hyperthesis that related words
often appear in the same documents and looks at the ratio of the co-occurrence
probability of two words rather than their co-occurrence probability. That is, the
Glove algorithm involves collecting word co-occurrence statistics in the form of
a word co-occurrence matrix X, whose element Xij represents how often word i

appears in the context of word j . It then defines a weighted cost function to yield
the final word vectors for all the words in the vocabulary. The corresponding
source code for the model and pre-trained word vectors are available here.3

Word embeddings are widely adopted in a variant of NLP tasks. In Kim (2014),
the pre-trained word2vec is directly employed for sentence-level classifications.
In Hu et al. (2017, 2018), the pre-trained word2vec is tested in predicting the
quality of online health expert question-answering services. It is noted that the
determination of word vector dimensions is mostly task-dependent. For example,
a smaller dimensionality works better for more syntactic tasks such as named entity
recognition (Melamud et al. 2016) or part-of-speech (POS) tagging (Plank et al.
2016), while a larger dimensionality is more effective for more semantic tasks such
as sentiment analysis (Ruder et al. 2016).

4.3 Learning Models

A long-running challenge of NLP models is to capture dependencies, especially the
long-distance dependencies, of sentences. A natural idea is to apply the powerful
sequence data learning models, i.e., the recurrent neural networks (RNNs) (Elman
1990), in language models. Hence, in the following, we will introduce RNNs and
more especially, the famous long short-term memory (LSMT) network (Hochre-
iter and Schmidhuber 1997) and the recently proposed Gated Recurrent Unit
(GRU) (Chung et al. 2014). Moreover, we will briefly describe convolutional neural
networks (CNNs) in NLP, which can be efficiently trained.

4.3.1 Recurrent Neural Networks (RNNs)

RNNs are powerful tools for language models, since they have the ability to capture
long-distance dependencies in sequence data. The idea to model long-distance
dependencies is quite straightforward, that is, to simply use the previous hidden

1https://code.google.com/archive/p/word2vec/
2https://radimrehurek.com/gensim/
3https://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/
https://nlp.stanford.edu/projects/glove/
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Fig. 4.1 Architecture of RNN

state ht−1 as input when calculating the current hidden state ht . See Fig. 4.1 for an
illustration, where the recursive node can be unfolded into a sequence of nodes.

Mathematically, an RNN can be defined by the following equation:

ht =
{

tanh (Wxhxt + Whhht−1 + bh) t ≥ 1,

0 otherwise.
(4.1)

where xt is the t-th sequence input, W is the weight matrix, and b is the bias vector.
At the t-th (≥ 1) time stamp, the only difference between an RNN and a standard
neural network lies in the additional connection Whhht−1 from the hidden state at
time step t − 1 to that at the t time stamp.

Though RNNs are simply and easy to compute, they encounter the vanishing
gradient problem, which results in little change in the weights and thus no training,
or the exploding gradient problems, which results in large changes in the weights
and thus unstable training. These problems typically arises in the back propagation
algorithm for updating the weights of the networks (Pascanu et al. 2013). In Pascanu
et al. (2013), a gradient norm clipping strategy is proposed to deal with exploding
gradients and a soft constraint is proposed for the vanishing gradients problem. The
proposed method does not utilize the information in a whole.

RNNs are very effective for sequence processing, especially for short-term
dependencies, i.e., neighboring contexts. However, if the sequence is long, the long
term information is lost. One successful and popular model is to modify the RNN
architecture, producing namely the long short-term memory (LSMT) (Hochreiter
and Schmidhuber 1997) network. The creativity of LSTM is to introduce the
memory cell c and gates that controlling the signal flows in the architecture. See
the illustrated architecture in Fig. 4.2a and the corresponding formulas as follows:

ft = σ
(
Wxf xt + Whf ht−1 + bf

)
(4.2)

it = σ (Wxixt + Whiht−1 + bi ) (4.3)

ot = σ (Wxoxt + Whoht−1 + bo) (4.4)

c̃t = tanh (Wxcxt + Whcht−1 + bc) (4.5)

ct = ft � ct−1 + it � c̃t (4.6)

ht = ot � tanh(ct ). (4.7)
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Fig. 4.2 Architecture of (a) LSTM and (b) GRU

Equations (4.2), (4.3) and (4.4) correspond to the forget gate, the input gate, and the
output gate, respectively. σ is the logistic function outputting the value in the range
[0, 1], W and b are the weight matrix and bias vector, respectively, and � is the
element wise multiplication operator. Equations 4.2, 4.3 and 4.4 corresponds to the
forget gate, input gate and output gate, respectively. The function of these gates, as
their name indicate, is either allow all signal information to pass through (the gate
output equals 1) or block it from passing (the gate output equals 0).

In addition to the standard LSTM model described above, a few LSTM variants
have been proposed and proven to be effective. Among them, the Gated Recurrent
Unit (GRU) (Chung et al. 2014) network is one of the most popular ones. GRU is
simpler than a standard LSTM as it combines the input gate and the forget gate into a
single update gate. See the illustrated architecture in Fig. 4.2b and the corresponding
formulas as follows:

rt = σ (Wxrxt + Whrht−1 + br ) (4.8)

zt = σ (Wxzxt + Whzht−1 + bz) (4.9)

h̃t = tanh (Wxhxt + Whh(rt � ht−1) + bh) (4.10)

ht = (1 − zt ) � ht−1 + zt � h̃t . (4.11)

Compared to the LSTM, the GRU has slightly fewer parameters and also does not
have a separate “cell” to store intermediate information. Due to its simplicity, GRU
has been extensively used in many sequence learning tasks to conserve memory
or computation time. Besides GRU, there are a few variants that share similar but
slightly different architecture as LSTM. More details can be found in Gers and
Schmidhuber (2000), Koutník et al. (2014), Graves et al. (2017), and Józefowicz
et al. (2015).
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4.3.2 Convolutional Neural Networks (CNNs)

While RNNs are the ideal choices for many NLP tasks, they have an inherent
limitation. Most RNNs rely on bi-directional encoders to build representations of
both past and future contexts (Bahdanau et al. 2014; Zhou et al. 2016). They can only
process one word at a time. It is less natural to utilize the parallelization architecture
of GPU computation in the training and the hierarchical representations over the
input sequence (Gehring et al. 2017). To tackle these challenges, researchers have
proposed the convolutional architecture for neural machine translation (Gehring
et al. 2017). The work borrows the idea of CNNs which utilize layers with
convolving filters to extract local features and have been successfully applied
in image processing (LeCun et al. 1998). In the convolutional architecture, the
input elements x = (x1, x2, . . . , xm) are embedded in a distributional space as
w = (w1, w2, . . . , wm)), where wj ∈ R

f . The final input element representation is
computed by e = (w1 + p1, w2 + p2, . . . , wm + pm), where p = (p1, p2, . . . , pm)

is the embedded representation of the absolute position of input elements with
pj ∈ R

f . A convolutional block structure is applied in the input elements to output
the decoder network g = (g1, g2, . . . , gn). The proposed architecture is reported to
outperform the previous best result by 1.9 BLEU on WMT’16 English-Romanian
translation (Zhou et al. 2016).

CNNs not only can compute all words simultaneously by taking advantage of
GPU parallelization computation, which shows much faster training than RNNs, but
they also show better performance than the LSTM models (Zhou et al. 2016). Other
NLP tasks, such as sentence-level sentiment analysis (Kim 2014; dos Santos and
Gatti 2014), character-level machine translation (Costa-Jussà and Fonollosa 2016),
and simple question answering (Yin et al. 2016), also demonstrate the effectiveness
of CNNs.

4.4 Applications

In the following, we present the development of five key NLP applications: part-
of-speech (POS) tagging and named entity recognition (NER) are two fundamental
NLP applications, which can enrich the analysis of other NLP applications (Col-
lobert et al. 2011; Florian et al. 2003; Toutanova et al. 2003); machine translation
and automatic English grammatical error correction are two applications containing
direct commercial value (Bahdanau et al. 2014; Bhirud et al. 2017; Hoang et al.
2016; Manchanda et al. 2016; Ng et al. 2014; Sutskever et al. 2014); and image
description, an attractive and significant application requiring the techniques of both
computer vision and NLP (Bernardi et al. 2016; Hodosh et al. 2013; Karpathy and
Fei-Fei 2017).
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4.4.1 Part-of-Speech (POS) Tagging

Part-of-speech (POS) tagging (Collobert et al. 2011) aims at labeling (assocating)
each word with a unique tag that indicates its syntactic role, e.g., plural noun,
adverbs, etc. The POS tags are usually utilized as common input features for various
NLP tasks, e.g., information retrieval, machine translation (Ueffing and Ney 2003),
grammar checking (Ng et al. 2014), etc.

Nowadays, the most common used POS category is the tag set in the Penn
Treebank Project, which defines 48 different tags (Marcus et al. 1993). They are
commonly used in various NLP libraries, such as NLTK4 in Python, Stanford
tagger,5 and Apache OpenNLP.6

The existing algorithms for tagging can be generally categorized into two
groups, the rule-based group and the stochastic group. The rule-based meth-
ods such as the Eric Brills tagger (Brill 1992) and the disambiguation rules
in LanguageTool,7 are usually hand-crafted, derived from corpus, or developed
collaboratively (e.g., for LanguageTool). The rule-based methods can achieve a
pretty low error rate (Brill 1992), but generally, they are still less sophisticated
when compared with stochastic taggers. In contrast, stochastic taggers, such as the
Hidden Markov Model (HMM) (Brants 2000) and the Maximum Entropy Markov
Model (MEMM) (McCallum et al. 2000), model the sequence of POS tags as the
hidden states, which can be learned from the observed word sequence of sentences.
The probability of co-occurrence of words and tags is modeled by HMM (Brants
2000) and the conditional probability of tags given the words is modeled by
MEMM (McCallum et al. 2000) to output the corresponding tags.

Later, more advanced methods have been proposed to improve both HMM and
MEMM. The methods include utilizing bidirectional cyclic dependency network
tagger (Manning 2011) and using other linguistic features (Jurafsky and Martin
2017). More than 96% accuracy was reported by both HMM (Brants 2000) and
MEMM (Manning 2011). More state-of-the-art performances can be found on
internet.8

4.4.2 Named Entity Recognition (NER)

Named entity recognition (NER) is a classic NLP task that seeks to locate and
classify named entities such as person names, organizations, locations, numbers,

4http://www.nltk.org/
5https://nlp.stanford.edu/software/tagger.shtml
6https://opennlp.apache.org/
7http://wiki.languagetool.org/developing-a-disambiguator
8https://aclweb.org/aclwiki/POS_Tagging_(State_of_the_art)

http://www.nltk.org/
https://nlp.stanford.edu/software/tagger.shtml
https://opennlp.apache.org/
http://wiki.languagetool.org/developing-a-disambiguator
https://aclweb.org/aclwiki/POS_Tagging_(State_of_the_art)
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dates, etc. from the text corpora. Most existing NER taggers are built on linear
statistical models, such as Hidden Markov Models (McCallum et al. 2000) and
Conditional Random Field (Lafferty et al. 2001). Traditional NER techniques
heavily rely on hand-crafted features for the taggers and only apply for small
corpora (Chieu and Ng 2002).

Nowadays, due to the development of deep learning technologies, a variety
of neural network models, such as LSTM and CNN, have been proposed to
establish the tagger models (Huang et al. 2015; Lample et al. 2016). Unlike the
standard neural networks for conventional classification whose final layer is a
softmax, the NN based named entity models utilize a linear-chain CRF to model the
dependencies across the word sequence for NER. In Huang et al. (2015) and Lample
et al. (2016), the sequence tagging model consists of a bidirectional LSTM network
and a CRF layer (BI-LSTM-CRF). In Ma and Hovy (2016), the BI-LSTM-CRF is
modified by adding a character-based CNNs at the bottom of BI-LSTM. The CNNs
are used to encode the characters of a word into its character-level representation.
The added character-level information, together with word-level representation is
then fed into the bidirectional LSTM. This so-called Bi-directional LSTM-CNNs-
CRF architecture is reported to be better than the BI-LSTM-CRF one. Similar
publications have been generated to implement the LSTM network and the CRF
layer for NER tasks (Chiu and Nichols 2016; Yang et al. 2016; Wang et al. 2015).

4.4.3 Neural Machine Translation

The objective of machine translation (MT) is to translate text or speech from
one language to another one. Conventional MT utilizes statistical models whose
parameters are inferred from bilingual text corpora. Recently, a major development
in MT is the adoption of sequence to sequence learning models, promoting the
state-of-art technique called neural machine translation (NMT) (Wu et al. 2016;
Gehring et al. 2017; Vaswani et al. 2017). NMT has been proven great success
owing to the rapid development of deep learning technologies, whose architecture
is comprised of an encoder-decoder model (Sutskever et al. 2014), and an attention
mechanism (Bahdanau et al. 2014).

An encoder model RNNenc provides a representation of the source sentence by
inputing a sequence of source words x = (x1, . . . , xm) and producing a sequence of
hidden states h = (h1, . . . , hm). According to Sutskever et al. (2014), a bidirectional
RNNenc is usually favored to reduce long sentence dependencies, and the final state
h is the concatenation of the states produced by forward and backward RNNs,

h =
[−→

h ;←−
h

]
. The decoder is also a recurrent neural network, RNNdec, which

predicts the probability of a target word of a sentence yk , based on the hidden
state h, the previous words y<k = (y1, . . . , yk−1), the recurrent hidden state in the
decoder RNN sk , and the context vector ck . The context vector ck is also called the
attention vector, which is computed as a weighted vector of the source hidden state
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h:
∑m

j=1 αijhj , where m is the length of source sentence, and αij is the attention
weight. The attention weight can be calculated in the fashion of concatenation of
bi-directional encoder (Bahdanau et al. 2014) or a simpler version with a location-
based function on the target hidden state (Luong et al. 2015b). Finally, the decoder
outputs a distribution over a fixed-size vocabulary through softmax approximation:

P(yk|y<k, x) = softmax (g(yk−1, ck, sk)) (4.12)

where g is a non-linear function. The encoder-decoder and attention-driven model
is trained end-to-end by optimizing the negative log likelihood of the target words
using stochastic gradient descent (SGD).

The tuning of hyper-parameters of NMT model is crucial to the performance
of translation. In Britz et al. (2017), it is concluded that a higher dimensional
embedding such as 2,048 usually yields the best performance. Nevertheless, small
dimensionality such as 128 shall surprisingly perform well and converge much
faster for some tasks. The depth of encoder and decoder is not necessarily
deeper than four layers, although in Wu et al. (2016), eight layers are employed.
Bidirectional encoders always outperform unidirectional ones as they are able to
create representations that take both past and future sequence words into account.
The comparison in Wu et al. (2016) also shows that LSTM cells consistently beat
GRU cells. Moreover, beam search (Wiseman and Rush 2016) is commonly used in
most NMT tasks to output more precise target words. Usually, the well-tuned beam
search size ranges from 5 to 10. The algorithm optimizer in the training will also
affect the performance. Adam (Kingma and Ba 2014) optimizer with a fixed learning
rate (smaller than 0.01) without decay seems effective and shows fast convergence.
In some tasks, however, standard SGD with scheduling will generally lead to better
performance although the convergence is relatively slow (Ruder 2016). There are
other hyper-parameters that directly relate to the model performance, to name a
few, dropout (Srivastava et al. 2014), layer normalization (Ba et al. 2016), residual
connection of layers (He et al. 2016), etc.

Next, we summarize some aspects in advancing NMT. The first issue is to restrict
the size of the vocabulary. Though NMT is an open vocabulary problem, the number
of target words of NMT must be limited, because the complexity of training an
NMT model increases as the number of target words increases. In practice, the
target vocabulary size K is often in the range of 30k (Bahdanau et al. 2014) to
80k (Sutskever et al. 2014). Any word out of the vocabulary is represented as
an unknown word, denoted by unk. The traditional NMT model works well if
there are fewer unknown words in the target sentences, but it has been observed
that the performance of translation degrades dramatically if there are too many
unknown words (Jean et al. 2015). An intuitive solution to address this problem
is to use a larger vocabulary, while simultaneously reducing the computational
complexity using sampling approximations (Jean et al. 2015; Mi et al. 2016; Ji
et al. 2015). Other researcher reported that the unknown word problem can be
addressed alternatively without expanding vocabulary. For example, one can replace
the unknown word with special token unk, and then post-process the target sentence
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by copying the unk from source sentence or applying word translation to the
unknown word (Luong et al. 2015c). Instead of implementing word-based neural
machine translation, other researchers proposed to using character-based NMT to
eliminate unknown words (Costa-Jussà and Fonollosa 2016; Chung et al. 2016),
or using a hybrid method – a combination of word-level and character-level NMT
model (Luong and Manning 2016). The implementation of subword units also
shows significant effectiveness in reducing the vocabulary size (Sennrich et al.
2016b). The algorithm, called byte pair encoding (BPE), starts with a vocabulary
of characters, and replaces the most frequent n-gram pairs with a new n-gram.9

To summarize, the word-level, BPE-level and character-level vocabulary forms the
fundamental treatment of neural machine translation practice.

The second issue is about the training corpus. As widely noted, one of the major
factors behind the success of NMT is the availability of high quality parallel corpora.
How to include more other data sources into NMT training has become critical
and drawn great attention recently. Inspired by statistical machine translation, the
researchers improve the translation quality by leveraging abundant monolingual
corpora for neural machine translation (Gucehre et al. 2015; Sennrich et al. 2016a).
Two recent publications propose an unsupervised machine translation method to
utilize monolingual data (Artetxe et al. 2017; Lample et al. 2017). Both methods
train a neural machine translation model without any parallel corpora with fairly
high accuracy, and establish the future direction for NMT. In Luong et al. (2015a),
Johnson et al. (2017), and Firat et al. (2017), the authors use a single NMT model to
translate between multiple languages, such that the encoder, decoder and attention
modules can be shard across all languages.

The third issue is the implementation of neural machine translation. To deploy
neural machine translation systems, one needs to build the encoder-decoder model
(with attention mechanism) and to train the end-to-end model on GPUs. Nowadasy,
there are quite many toolkits publicly available for research, development and
deployment:

– dl4mt-tutorial (based on Theano): https://github.com/nyu-dl/dl4mt-tutorial
– Seq2seq (based on Tensorflow): https://github.com/google/seq2seq
– OpenNMT (based on Torch/PyTorch): http://opennmt.net
– xnmt (based on DyNet): https://github.com/neulab/xnmt
– Sockeye (based on MXNet): https://github.com/awslabs/sockeye
– Marian (based on C++): https://github.com/marian-nmt/marian
– nmt-keras (based on Keras): https://github.com/lvapeab/nmt-keras

9The source code can be found at https://github.com/rsennrich/nematus.

https://github.com/nyu-dl/dl4mt-tutorial
https://github.com/google/seq2seq
http://opennmt.net
https://github.com/neulab/xnmt
https://github.com/awslabs/sockeye
https://github.com/marian-nmt/marian
https://github.com/lvapeab/nmt-keras
https://github.com/rsennrich/nematus
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4.4.4 Automatic English Grammatical Error Correction

Since English is not the first language of many people in the world, to facilitate
the writing, grammar checkers have been developed. Some commercial or freeware
such as Microsoft Word, Grammarly,10 LanguageTool,11 Apache Wave,12 and Gin-
ger,13 can provide grammar checking services. However, due to various exceptions
and rules in natural languages, these grammar checkers are still fall far short of
human English teachers.

To boost the development of grammatical error checking and correction, various
shared tasks and focused sessions were launched to attract researchers’ interests
and contributions. The tasks include the Helping Our Own (HOO) Shared Task
in 2011 (Dale and Kilgarriff 2011), the CoNLL Shared Task in 2013 (Ng et al.
2013) and 2014 (Ng et al. 2014), respectively, and the AESW Shared Task in
2016 (Daudaravicius et al. 2016). Each of the shared tasks provided the original
text corpus and the corresponding ones corrected by human editors. The dataset of
CoNLL Shared Task 2013 and 2014 is a collection of 1,414 marked student essays
from the National University of Singapore, where all the students are non-native
English speakers. The detected grammatical errors are classified into 28 types.
Meanwhile, the datasets of the HOO and the AESW shared tasks are extracted from
published papers and proceedings of conferences. The HOO task is a collection
of fractional texts from 19 published papers, while the AESW one is a collection of
shuffled sentences generated from 9,919 published papers (mainly from physics and
mathematics).

Recently, various methods have been proposed to correct the grammatical
errors (Manchanda et al. 2016; Rozovskaya and Roth 2016; Bhirud et al. 2017;
Ng et al. 2014), which can be categorized into three main types: (1) the rule-
based approach, (2) the statistical approach, (3) the machine translation approach.
The rule-based approach utilizes rules in the detection of mistakes. The rules are
usually hand-crafted rules, inputted manually based on different cases. Most of
them use pattern matching, dependency parse tree, as well as POS to find the
grammatical errors, e.g., subject-verb-agreement. The rule-based approach can be
found in LanguageTool (Daniel 2003) and several systems in the CoNLL shared
task (Ng et al. 2014). It is usually too time-consuming to generating the hand-
crafted rules. Hence, researchers turn to the statistical approaches, which can learn
the rules from large corpora such as the English Wikipedia dump, the Google
Book N-gram, Web1T corpus, Cambridge Learner Corpus, and English Giga Word
corpus, et. Some typical methods include (1) extracted tri-grams with low frequency
and particular patterns from the Web1T corpus (Wu et al. 2013), (2) utilizing the

10https://www.grammarly.com/
11https://languagetool.org/
12https://incubator.apache.org/wave/
13Ginger

https://www.grammarly.com/
https://languagetool.org/
https://incubator.apache.org/wave/
http://Ginger
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three tokens around the target article and the Averaged Perceptron to suggest the
correct article (Rozovskaya and Roth 2010), and (3) detecting grammar errors by
comparing non-existent bi-grams in Google Book n-gram corpus (Nazar and Renau
2012). The statistical approaches are often favorable in grammar checking because
they only require a big corpus from native English users. In contrast, the machine
translation approaches need a big parallel corpus to extract the corresponding rules.
Due to the development of deep learning technologies, the machine translation
approaches become prevalent in correcting the grammatical errors. These methods
utilize the methods mentioned in Sect. 4.4.3 to feed the problematic sentences and
output the correct ones. For example, the AMU team (Ng et al. 2014) utilized the
Phrase-based machine translation in the detection for the task in CoNLL 2014
while CNN with LSTM is applied to tackle the correction problem (Schmaltz
et al. 2016). In Schmaltz et al. (2016), the input and output sentences are encoded
by some additional tags to fit the requirement of NMT. For example, the input
sentence “The models works <eos>” corresponds to the output sentence “The
models <del>works</del> <ins>work</ins> <eos>”, where <del>, <ins>,
and <eos> are the tags denoting the deletion operation, the insertion operation,
and the end of sentence. More recent proposals for machine translation methods
and some fair comparisons can be referred to Junczys-Dowmunt and Grundkiewicz
(2016), Hoang et al. (2016), and Rozovskaya and Roth (2016).

4.4.5 Image Description

Image description (Karpathy and Fei-Fei 2017; Vinyals et al. 2017; Xu et al.
2015) is a challenging and active research topic which requires techniques from
both computer vision and natural language processing. Its goal is to automatically
generate natural language descriptions of images on the corresponding regions.
Researchers have proposed different models to learn about the correspondences
between language and visual data. For example, in Karpathy and Fei-Fei (2017),
a multimodal RNN architecture is proposed to align a modality trained by CNNs
over image regions with a modality trained by bidirectional RNNs over sentences.
In Vinyals et al. (2017), CNNs are applied to learn the representation of images
while LSTMs are utilized to output the sentences. A direct model is built to
maximize the likelihood of the sentence given the image. In Xu et al. (2015),
similar to Vinyals et al. (2017), CNNs are applied to generate the representation of
images and LSTMs are utilized to produce the captions. The key improvement is to
include attention-based mechanisms to further improve the model performance. The
performance of image captioning is increased as new methods have been proposed.
More details can be referred to Bernardi et al. (2016).
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4.5 Datasets for Natural Language Processing

Many datasets have been published in different research domains for natural
language processing. We try to provide the basic ones mentioned in previous
sections.

4.5.1 Word Embedding

– word2vec14: The link not only provides the pre-trained vectors in 300-
dimensions of 3 million words and phrases, which are trained on Google News
dataset (about 100 billion words), but also provide various online available
datasets, such as the first billion characters from wikipedia, the latest Wikipedia
dump, the WMT11 site, and etc.

– Glove15: The word vectors are trained by Glove (Pennington et al. 2014). The
dataset contains pre-trained vectors trained from sources including Wikipedia,
Twitter and some common crawled data.

4.5.2 N-Gram

– Google Book N-gram16: The dataset contains 1–5-gram counting from printed
books in different languages, e.g., English, Chinese, French, Hebre, Italian, etc.
Specialized corpora are available for English, like American English, British
English, English Fiction, and English One Million. The n-grams are tagged with
Part-Of-Speech, and are counted yearly.

– Web 1T 5-gram17: The dataset, contributed by Google, consists of 1–5-gram
counting from accessible websites and yields about 1 trillion tokens. The
compressed file size (gzip’ed) is approximately 24 GB.

14https://code.google.com/archive/p/word2vec/
15https://nlp.stanford.edu/projects/glove/
16http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
17https://catalog.ldc.upenn.edu/ldc2006t13

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://catalog.ldc.upenn.edu/ldc2006t13
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4.5.3 Text Classification

– Reuters Corpora (RCV1, RCV2, TRC2)18: The dataset contains a large
collection of Reuters News stories, which is written in five languages and the
corresponding translations in six categories. Detailed description can be found
in Lewis et al. (2004)

– IMDB Movie Review Sentiment Classification19: The dataset, consisting of
review comments of 50,000 movies, is first tested in Maas et al. (2011) for binary
sentiment classification.

– News Group Movie Review Sentiment Classification20: The datasets were
introduced in Pang et al. (2002) and Pang and Lee (2004, 2005) for sentimental
analysis. They consist of movie-review documents labeled with respect to their
overall sentiment polarity (position or negative) or subjective rating (e.g., “two
and a half stars”) and sentences labeled with respect to their subjectivity status
(subjective or objective) or polarity.

4.5.4 Part-Of-Speech (POS) Tagging

– Penn Treebank21: The dataset selected 2,499 stories from a three year Wall
Street Journal (WSJ) collection of 98,732 stories for syntactic annotation (Mar-
cus et al. 1999).

– Universal Dependencies22: Universal Dependencies is a project that seeks
to develop cross-linguistically consistent treebank annotation for multiple lan-
guages. The latest version contains 102 treebanks in 60 languages (Nivre et al.
2017).

4.5.5 Machine Translation

– Europarl23: The Europarl parallel corpus contains sentences pairs in 21 Euro-
pean languages. Detailed description can be found in Koehn (2005).

18http://trec.nist.gov/data/reuters/reuters.html
19http://ai.stanford.edu/~amaas/data/sentiment/
20http://www.cs.cornell.edu/people/pabo/movie-review-data/
21https://catalog.ldc.upenn.edu/ldc99t42
22https://catalog.ldc.upenn.edu/LDC2000T43
23http://www.statmt.org/europarl/

http://trec.nist.gov/data/reuters/reuters.html
http://ai.stanford.edu/~amaas/data/sentiment/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://catalog.ldc.upenn.edu/ldc99t42
https://catalog.ldc.upenn.edu/LDC2000T43
http://www.statmt.org/europarl/
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– United Nations Parallel Corpus24: The corpus is generated from the offi-
cial records and other parliamentary documents of the United Nations. These
documents are mostly available in the six official languages of the United
Nations (Ziemski et al. 2016).

4.5.6 Automatic Grammatical Error Correction

– NUS Corpus of Learner English (NUCLE)25: The corpus consists of about
1,400 essays written by students at the National University of Singapore. The
essays are completely annotated with error tags and corrections by English
instructors.

– AESW 2016 Data Set26: The dataset is a collection of random ordered sentences
extracted from 9,919 published journal articles (mainly from physics and mathe-
matics).The sentences are annotated with the changes made by journal editors.

4.5.7 Image Description

– Flickr8K27: The dataset is standard benchmark for sentence-based image
description, consisting of around 8K images crawled from the Flickr.com
website, where each image is paired with five different captions to provide
clear descriptions of the salient entities and events (Hodosh et al. 2013).

– Flickr30K28: The dataset is an extended version of Flickr8K and consists of
around 30K images while each image containing five descriptions (Plummer
et al. 2017).

– MSCOCO29: The dataset consists of 123,287 images with five different descrip-
tions per image (Lin et al. 2014). Images in the dataset are annotated for 80
categories and provided the bounding boxes around all instances in one of the
categories.

24https://conferences.unite.un.org/uncorpus
25http://www.comp.nus.edu.sg/~nlp/conll14st.html
26http://textmining.lt/aesw/index.html
27http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
28http://web.engr.illinois.edu/~bplumme2/Flickr30kEntities/
29http://cocodataset.org/

https://conferences.unite.un.org/uncorpus
http://www.comp.nus.edu.sg/~nlp/conll14st.html
http://textmining.lt/aesw/index.html
http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
http://web.engr.illinois.edu/~bplumme2/Flickr30kEntities/
http://cocodataset.org/
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4.6 Conclusions and Discussions

In this survey, we have provided a succinct review of the recent development
of NLP, including word representation, learning models, and key applications.
Nowadays, Word2vect and Glove are two main successful methods to learn the
word representation in the semantic space. RNNs and CNNs are two mainstreams of
learning models to train the NLP models. After exploring the five key applications,
we envision the following interesting research topics. First, it is effective to
include additional features or results (e.g., POS tagging and NER) to improve the
performance for other applications, such as machine translations and automatic
grammar correction. Second, it is worth investigating the end-to-end model, which
may further improve the model performance. For example, nowadays, the embedded
word representation is learned independently to the applications. One may explore
new representations which fit for the later applications, e.g., sentimental analysis,
text matching. Third, it is promising to explore the advancement of multidisciplinary
approaches. For example, in the image description application, one needs the
technologies from both computer vision and natural language processing. It is
significant to understand both areas and make the breakthrough.
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