Exhumation of the Dahinggan Mountains, NE China from the Late Mesozoic to the Cenozoic: New evidence from fission-track thermochronology

Xiaoming Li, Xiaoyong Yang, Bin Xia, Guilun Gong, Yehua Shan, Qiaosong Zeng, Wei Li, Weidong Sun

Abstract

Zircon and apatite fission-track (FT) analyses were used to reveal the exhumation of Phanerozoic granitoid intrusions in the Dahinggan Mountains, northeastern China. Zircon FT ages ranging from 84 ± 5 to 97 ± 8 Ma, and apatite FT ages from 47 ± 3 to 67 ± 4 Ma with mean track lengths between 12.3 ± 2.3 and 13.3 ± 2.2 μm, respectively, were obtained for the Phanerozoic granitoids sampled along a south-southwest to north-north-east transect across the Dahinggan Mountains. Three cooling stages from the Late Mesozoic to the Cenozoic have been identified in the studied region based on FT results and modeling. Stage one was a rapid cooling period from the closure temperature of zircon FT to the high temperature part of the apatite FT partial annealing zone (~210–110 °C) during ~90–57 Ma. Stage two was a relatively slow cooling period (~110–60 °C) occurred between ~57 Ma and 20 Ma, suggesting that the granitoids had been exhumed to depths of ~1–2 km. The final stage was a cooling period (60–20 °C) occurred since the Miocene, which bring studied samples to the Earth’s surface at an accelerated exhumation rate. The estimated maximum exhumation is ~5 km assuming a steady-state geothermal gradient of 35 °C/km. Our results indicate that this exhumation is possibly led by the Pacific plate subduction combined with intracontinental orogeny associated with asthenospheric upwelling.

© 2011 Elsevier Ltd. All rights reserved.
Dahinggan Mountains is an ideal candidate for understanding the subsequent exhumation process in NE China together with its neighboring regions. The age and exhumation rate of the Dahinggan Mountains were, however, not well constrained.

Fission-track (FT) dating is an effective method to reveal the history of the exhumation and the pattern of tectonic geomorphology in the upper crust, which has been successfully applied to studies on the spatial and temporal patterns of the exhumation since the Mesozoic in the Alps, Appalachians, Andes, Qinghai-Tibetan Plateau, the ultrahigh pressure Qingling-Dabie-Sulu belt, etc. (e.g., Gleadow and Fitzgerald, 1987; Kemp, 1989; Wagner and Van den haute, 1992; Fitzgerald and Stump, 1997; Johnson, 1997; Gallagher et al., 1998; Roden-Tice et al., 2000; Grimmer et al., 2002; Willett et al., 2003; Yuan et al., 2006; Vassallo et al.,

Fig. 1. (a) Sketch map of the Mongo-Okhotsk orogenic belt, showing the study area; and (b) Sketch map of Phanerozoic granitoids of the Dahinggan Mountains, showing the locations of surface samples (modified after BGMRNM, 1991)). Note: Faults A–H are regional deep faults conjectured with geophysical features and field outcrops (BGMRNM, 1991). Among them, A is the boundary fault between northern China Block and Mongo-Okhotsk orogenic belt; B is the plate subduction suture in the early Paleozoic; C is the suture between the Siberia plate and the North China plate in the later Paleozoic; D is a fault inside the Siberia plate in the later Paleozoic; E is a fault inside the Siberia plate in the later Proterozoic to early Paleozoic; F is a fault inside the Siberia plate in the Paleozoic; G is northern part of DT Fault formed in the Mesozoic which represents by the gravity gradient across the whole Dahinggan Mountains; H is the boundary fault between the Dahinggan Mountains and the Songliao Basin.
2. Geological setting

The north–north-east trending Dahinggan Mountains, located near the border of China, Russia and Mongolia, are just obliquely straddling the Hinggan–Kongolong orogen, and are also distinctly opposed by the Taibai–Huangshan Mountains with the Yanshan Chain in-between, both depicting the main tectonic framework of East China (Fig. 1a). They have more than 1000 km long, hundreds of kilometer wide, and more than 2000 m above the sea level in the southwest decreasing gradually to hundreds of meters above the sea level in the northeast (Fig. 1b). Their Moho becomes deeper gradually westward, with an abrupt change in crust thickness of 35–36 km in the east to 46 km in the west (BGMRNM, 1991). It is the north part of the famous Dahinggan Mountains–Taibei Mountains. The latterly formed NNE trending Dahinggan Mountains–Taihangshan Mountains (DT) Fault, approximately distributed along the host ridge of the Dahinggan Mountains, cuts off all the pre-existing, large-scale faults, including the Northern Margin Fault of North China Block, the Xue Moron He Fault, and the Erlian–Hegenshan Fault. These pre-existing faults control the distribution of Yanshanian (from the Jurassic to the Cretaceous) igneous rocks, but have no evident displacement along them (Liu et al., 2004; Xu, 2007).

More than 75% area of the Dahinggan Mountains is covered by the Mesozoic magmatite, forming a significant polymetallic ore belt in NE China, with important resources of tin, copper, lead, and zinc (Li et al., 2004). The intensive magmatic activities and regional granitoid emplacement in the middle-southern Dahinggan Mountains are mainly concentrated during 150–120 Ma, 150–140 Ma and 140–120 Ma, respectively. Most of the granitoid intrusions in the northern Dahinggan Mountains are emplaced from the late Paleozoic to the Late Cretaceous, with only a small number formed in the Proterozoic or the Early Paleozoic (BGMRNM, 1991; BGMRHJL, 1993).

The Mesozoic mantle upwelling of the Dahinggan Mountains has continued until the Cenozoic. However, large scale eruptions of basalt, with mantle xenoliths, are mainly distributed in the rift valleys of the Cenozoic basins, especially those on the sides of the Dahinggan Mountains (Liu et al., 1992, 2001; Wang et al., 2002; Lei and Zhao, 2005). Thus, they probably have insignificant influence on the tectonic uplift of the Dahinggan Mountains.

3. Sampling and experimental methods

Thirty-five representative samples of fresh Phanerozoic granitoids from a south–south-west to north–north-east transect across the Dahinggan Mountains, in this study, were collected for FT analysis (Fig. 1b, Table 1). Most samples are of the Jurassic to the Early Cretaceous in age, with a few samples of the Carboniferous, the Permian or the Triassic (Table 1). These samples are fine- to coarse-grained granite or diorite, without any significant tectonic or magmatic overprinting. Efforts have been paid to avoid possible thermal effect related to active faults and/or Cenozoic magmatisms.

In addition, we measured the longitude and latitude of each sampling location using a portable GPS with precision in the order of 10 m, along with its elevation with precision in the order of 5 m. This sampling strategy allows comparing the distribution of the FT ages with the relative elevations of the granitoids in order to estimate the variations in the cooling rates, and the inferred exhumation rates.

Apatite and zircon grains were obtained by crushing, sieving, magnetic and heavy liquids separation techniques. Apatite and zircon grains were mounted by epoxy resin and FEP (Fluroethylenepropylene) Teflon sheets, respectively. These prepared samples were carefully ground and polished to an optical finish to expose internal grain surfaces. Apatite spontaneous fission tracks were revealed by 5.5 M HNO3 at 21 °C for 20 s (Carlson et al., 1999), and zircon by a molten 8 g NaOH + 11.5 g KOH eutectic at 220 °C for 20–60 h (Gleadow et al., 1976), as necessary to obtain a high-quality etch (Gleadow, 1981).

Zircon and apatite FT ages were analyzed by using external detector method (Hurford and Green, 1983). The mounts were covered with a flake of low-U muscovite, packed for irradiation, together with standard uranium dosimeter glass SRM612 and standard known age sample FCT (27.8 ± 0.7 Ma) (Hurford and Green, 1983), and irradiated in a well-thermalized (Cd for Au > 100) neutron flux 4×10^{15} per cm2 s$^{-1}$ at 21 °C for 100 days in the IRTF reactor, Chinese Institute of Atomic Energy. After irradiation, muscovites were etched in 40% HF at 25 °C for 20 min to reveal induced fission tracks. Maximum etch pit dimensions (Dpar) were concurrently monitored as a representative of their chlorine content. Only those crystals with prismatic sections parallel to the c-crystallographic axis were accepted for Dpar analysis, because of their high etching efficiency. The FT ages were calculated following the method recommended by Hurford (1990), using the zeta calibration method (Hurford and Green, 1983). Ages were calculated using the Trackkey software (Dunkl, 2002). Ages quoted are central fission track ages with one standard error. Zeiss Axioplan microscope at 1250× magnification with AUTOSCAN system was used to observe and measure the spontaneous and induced densities of zircon and apatite FT populations, as well as confined lengths and their related Dpar values of apatite fission tracks.

4. Results

4.1. FT data

The central ages of zircon and apatite FT (as zircon and apatite FT ages in this study), the mean track lengths (MTL) and the mean Dpar values of apatite FT are listed in Table 1, whilst the representative plots of apatite FT length distributions are illustrated in Fig. 2. The measured zircon and apatite FT ages range from 84 ± 5 to 97 ± 8 Ma and 47 ± 3 to 67 ± 4 Ma, respectively (Table 1). All the measured apatite FT lengths are unimodal in distribution (Fig. 2), with a mean length of 12.3–13.3 μm and a standard deviation of ca. 2.0 μm, and a mean Dpar value of 1.5 ± 0.2 μm to 2.4 ± 0.3 μm (Table 1).

To better interpret the significance of our data, we modeled six representative apatite FT data sets with a large number of track lengths to quantify the timing and amount of cooling at specific locations. Their time–temperature paths most likely reveal the exhumation history of the Dahinggan Mountains due to the six samples basically evenly distributing in the Dahinggan Mountains (Fig. 1b).

Time–temperature histories were calculated using the inverse modeling approach of HeFty (Ketcham, 2005) with a multi-
<table>
<thead>
<tr>
<th>Sample No./mineral</th>
<th>Longitude E</th>
<th>Latitude N</th>
<th>Elevation (m)</th>
<th>Rock type</th>
<th>Formation era</th>
<th>n</th>
<th>P/105 cm²</th>
<th>ρi/105 cm²</th>
<th>ρd/105 cm²</th>
<th>Central age (Ma)</th>
<th>PT² (%)</th>
<th>Mean track length ± 1μm</th>
<th>No. of tracks</th>
<th>Mean Dpar ± 1μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH1–Ap</td>
<td>117°40.390'</td>
<td>43°12.490'</td>
<td>1030</td>
<td>Granite</td>
<td>J1–K1</td>
<td>30</td>
<td>11.9 (557)</td>
<td>22.8 (1068)</td>
<td>5.8 (5815)</td>
<td>51 ± 3</td>
<td>95</td>
<td>12.4 ± 1.5</td>
<td>33</td>
<td>1.7 ± 0.2</td>
</tr>
<tr>
<td>DH1–Zr</td>
<td>117°25.693'</td>
<td>43°36.550'</td>
<td>1540</td>
<td>Moyite</td>
<td>J1–K1</td>
<td>13</td>
<td>11.2 (517)</td>
<td>21.5 (992)</td>
<td>5.8 (5815)</td>
<td>51 ± 3</td>
<td>95</td>
<td>12.4 ± 1.5</td>
<td>33</td>
<td>1.7 ± 0.2</td>
</tr>
<tr>
<td>DH4–Ap</td>
<td>117°31.310'</td>
<td>43°57.254'</td>
<td>1750</td>
<td>Monzogranite</td>
<td>J1–K1</td>
<td>24</td>
<td>7.7 (360)</td>
<td>15.8 (743)</td>
<td>5.8 (5211)</td>
<td>47 ± 3</td>
<td>94</td>
<td>12.7 ± 1.5</td>
<td>21</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>DH5–Ap</td>
<td>117°33.195'</td>
<td>43°58.334'</td>
<td>1728</td>
<td>Granite</td>
<td>J1–K1</td>
<td>13</td>
<td>11.4 (149)</td>
<td>21.8 (286)</td>
<td>5.9 (5723)</td>
<td>52 ± 5</td>
<td>95</td>
<td>12.7 ± 1.5</td>
<td>21</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>DH6–Zr</td>
<td>117°55.968'</td>
<td>43°51.680'</td>
<td>1090</td>
<td>Granodiorite</td>
<td>J1–K1</td>
<td>12</td>
<td>60.3 (1318)</td>
<td>32.1 (341)</td>
<td>1.3 (3290)</td>
<td>89 ± 5</td>
<td>99</td>
<td>12.7 ± 1.5</td>
<td>21</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>DH6–Zr</td>
<td>117°53.389'</td>
<td>43°46.827'</td>
<td>1110</td>
<td>Diorite</td>
<td>J1–K1</td>
<td>11</td>
<td>17.0 (255)</td>
<td>35.9 (537)</td>
<td>5.9 (5723)</td>
<td>47 ± 4</td>
<td>88</td>
<td>12.7 ± 1.5</td>
<td>21</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>DH7–Zr</td>
<td>117°55.113'</td>
<td>43°44.775'</td>
<td>1035</td>
<td>Granite porphyry</td>
<td>J1–K1</td>
<td>20</td>
<td>4.4 (196)</td>
<td>9.0 (406)</td>
<td>5.9 (5723)</td>
<td>49 ± 3</td>
<td>97</td>
<td>13.0 ± 1.4</td>
<td>30</td>
<td>1.6 ± 0.2</td>
</tr>
<tr>
<td>DH10–Ap</td>
<td>117°05.985'</td>
<td>43°25.074'</td>
<td>960</td>
<td>Granite</td>
<td>J1–K1</td>
<td>5</td>
<td>5.9 (741)</td>
<td>15.3 (191)</td>
<td>1.4 (4125)</td>
<td>88 ± 8</td>
<td>99</td>
<td>13.0 ± 1.4</td>
<td>30</td>
<td>1.6 ± 0.2</td>
</tr>
<tr>
<td>DH11–Zr</td>
<td>117°18.519'</td>
<td>43°49.367'</td>
<td>659</td>
<td>Granodiorite</td>
<td>J1–K1</td>
<td>20</td>
<td>16.3 (1236)</td>
<td>29.1 (2200)</td>
<td>5.8 (5815)</td>
<td>55 ± 3</td>
<td>95</td>
<td>12.3 ± 2.3</td>
<td>106</td>
<td>1.8 ± 0.4</td>
</tr>
<tr>
<td>DH12–Zr</td>
<td>117°09.439'</td>
<td>43°14.994'</td>
<td>633</td>
<td>Monzonite</td>
<td>J1–K1</td>
<td>10</td>
<td>10.6 (258)</td>
<td>18.5 (450)</td>
<td>5.8 (5211)</td>
<td>56 ± 5</td>
<td>95</td>
<td>12.3 ± 2.3</td>
<td>106</td>
<td>1.8 ± 0.4</td>
</tr>
<tr>
<td>DH15–Zr</td>
<td>117°33.195'</td>
<td>43°58.334'</td>
<td>1728</td>
<td>Granite</td>
<td>J1–K1</td>
<td>13</td>
<td>11.4 (149)</td>
<td>21.8 (286)</td>
<td>5.9 (5723)</td>
<td>52 ± 5</td>
<td>95</td>
<td>12.7 ± 1.5</td>
<td>21</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>DH20–Zr</td>
<td>117°24.513'</td>
<td>43°56.340'</td>
<td>635</td>
<td>Granodiorite</td>
<td>J1–K1</td>
<td>10</td>
<td>12.2 (229)</td>
<td>21.3 (355)</td>
<td>5.9 (5723)</td>
<td>64 ± 6</td>
<td>97</td>
<td>12.7 ± 1.5</td>
<td>21</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>DH20–Zr</td>
<td>120°28.677'</td>
<td>45°26.966'</td>
<td>836</td>
<td>Riebeckite granite</td>
<td>J1–K1</td>
<td>20</td>
<td>11.2 (307)</td>
<td>22.7 (623)</td>
<td>5.9 (5723)</td>
<td>49 ± 4</td>
<td>98</td>
<td>12.7 ± 1.5</td>
<td>21</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>DH20–Zr</td>
<td>120°40.643'</td>
<td>45°58.153'</td>
<td>448</td>
<td>Diorite</td>
<td>J1–K1</td>
<td>8</td>
<td>13.6 (855)</td>
<td>34.0 (212)</td>
<td>5.8 (5211)</td>
<td>49 ± 3</td>
<td>76</td>
<td>12.7 ± 1.5</td>
<td>40</td>
<td>2.1 ± 0.2</td>
</tr>
<tr>
<td>DH22–Zr</td>
<td>120°01.218'</td>
<td>45°27.788'</td>
<td>478</td>
<td>Quartz diorite</td>
<td>P2</td>
<td>25</td>
<td>13.1 (742)</td>
<td>21.0 (1192)</td>
<td>5.8 (5815)</td>
<td>61 ± 3</td>
<td>100</td>
<td>12.7 ± 1.8</td>
<td>68</td>
<td>1.9 ± 0.2</td>
</tr>
<tr>
<td>DH22–Zr</td>
<td>120°11.333'</td>
<td>43°50.577'</td>
<td>268</td>
<td>Diorite</td>
<td>J1–K1</td>
<td>30</td>
<td>10.4 (291)</td>
<td>17.9 (503)</td>
<td>5.8 (5815)</td>
<td>57 ± 5</td>
<td>99</td>
<td>12.7 ± 1.5</td>
<td>68</td>
<td>1.9 ± 0.2</td>
</tr>
<tr>
<td>Sample Code</td>
<td>Sample Description</td>
<td>Number of Crystals Counted</td>
<td>Spontaneous Track Density</td>
<td>Number of Tracks Counted to Determine Spontaneous Track Density</td>
<td>Induced Track Density</td>
<td>Probability of Equaling or Exceeding v^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: n – number of crystals counted; ρ_s – spontaneous track density of a sample; N_s – number of tracks counted to determine ρ_s; ρ_i – induced track density of a sample measured in a muscovite external detector; N_i – number of tracks counted to determine ρ_i; $P(v^2)$ – probability of equaling or exceeding $v^2 (n - 1)$ degrees of freedom; $*$ – (after BGMRNM (1991) and BGMRHLJ (1993)). Ages determined by external detector method using zeta values of 340.8 ± 8.5 and 331.5 ± 9.6 for apatite and zircon, respectively.
compositional annealing model (Ketcham et al., 2007b) and the Daprb value as kinetic parameter. Models were run using c-axis projected lengths (Ketcham et al., 2007a), and initial track lengths were calculated according to the mean Daprb value of each sample using the formula of Carlson et al. (1999). The thermal history modeling results are illustrated in Fig. 2.

4.2. Cooling history analysis of each sample

The probability of equalling or exceeding $\chi^2 (n - 1)$ degrees of freedom of FT ages, or $P(\chi^2)$, is far greater than 5% (Table 1), indicating that the ages of zircon and apatite crystals can be classified as single population for each sample.
The measured FT ages (<100 Ma) are markedly younger than the formation ages of the host-rocks (>100 Ma) (BGMRNM, 1991; BGMRHLJ, 1993; Wu et al., 2011). Therefore, they represent the cooling ages of the samples during the uplift and denudation processes because of their negligible effects from magmatic or tectonic activities since the Late Cretaceous (BGMRNM, 1991; BGMRHLJ, 1993).

The apatite samples have experienced significant track annealing and a relatively long-term lingering in the apatite FT partial annealing zone owing to the evident shortening of apatite fission tracks (Table 1).

In Fig. 2, the modeling time–temperature cooling curves exhibit multi-stages or episodic patterns, including two rapid and one slow cooling in the Dahinggan Mountains since the Late Mesozoic.

4.3. Comparison of exhumation history among various locations

Table 1 shows similar age patterns of zircon and apatite FT in different sampling locations, suggesting a simple exhumation pattern for the Dahinggan Mountains since the Late Mesozoic, i.e., similar onset time and exhumation rate at different locations. However, the FT age vs. elevation plot (Fig. 3a) manifests the weak

Fig. 3. Plot of (a) FT ages vs. elevations, and (b) AFT ages vs. MTLs (mean apatite FT lengths). Error bar represents ±1σ. The data show no clear relationship between FT age and sample elevation as would be expected from simple exhumation of a region of low topographic relief, as well as inferior boomerang plots for AFT age vs. MTL.
relationship between age and sample elevation, not as would be expected from a region experiencing simple exhumation, as well as inferior boomerang plots for AFT (apatite FT) age vs. MTL (Fig. 3b). This may have resulted from the compositional effect of the apatite FT data (e.g., Barbarand et al., 2003; Vassallo et al., 2007) due to some difference of the mean Dpar values (1.5 ± 0.2–2.4 ± 0.3 µm) (Table 1).

The zircon and apatite FT ages suggest that these samples once cooled to the closure temperatures of zircon and apatite FT, and exhumed to the equivalent burying depths during ~84–97 Ma and ~47–67 Ma, respectively.

To the east, the Songliao Basin has the average geothermal gradient of 37 °C/km in the present-day, decreasing gradually outward to ~30 °C/km, all less than the paleogeothermal gradient in the basin (Ren, 1999). Thus, we can assume that the steady-state geothermal gradient was 35 °C/km in the Dahinggan Mountains.

Fig. 4 synthetically illustrates the cooling, and inferred exhumation history, under a steady-state geothermal gradient of 35 °C/km, in the Dahinggan Mountains since the Late Mesozoic. It has probably experienced an episodic cooling, and inferred exhumation in the Dahinggan Mountains since the Late Mesozoic as follows:

(1) The first rapid cooling rate of ~3.0 °C/Ma, and inferred exhumation rate of ~0.09 mm/a during ~90–57 Ma by using zircon and apatite “mineral pair” FT ages vs. their closure temperatures.

(2) Subsequent slow cooling rate of ~1.4 °C/Ma, and inferred exhumation rate of ~0.04 mm/a during ~57–20 Ma by apatite FT modeling.

(3) A second rapid cooling rate of ~2.0 °C/Ma, and inferred exhumation rate of ~0.06 mm/a since ~20 Ma by deducing from samples’ cooling starting from the low temperature of apatite FT partial annealing.

5. Discussion

The FT analyses performed within the Dahinggan Mountains allowed us to reconstruct their exhumation history and deduce their exhumation geodynamics over the period the Late Mesozoic to recent time.

5.1. Episodic exhumation

An episodic exhumation in a range of 0.04–0.09 mm/a in the Dahinggan Mountains since the Late Mesozoic was obtained from FT thermochronology (Fig. 4). The similar zircon and apatite FT ages of all the samples means that they were exhumed through the partial annealing zone of zircon and apatite FT as a simple orogen, and the main upper part of the Dahinggan Mountains remained at temperatures lower than ~210 °C, ~110 °C and ~60 °C after cooling episode in ~90, ~57 and ~20 Ma, respectively. Under a steady-state paleogeothermal gradient of 35 °C/km as discussed previously, the present surface of the Dahinggan Mountains should have been buried at a depth of ~5–6, ~2–3 and ~1–2 km in the period of the Late Cretaceous, Early Paleogene, and Early Neogene periods, respectively.

The results show that the maximum exhumation is likely ~5.0 km in the Dahinggan Mountains since the Late Mesozoic (Fig. 4). However, the current elevation is more than 2000 m above the sea level in the southwest, and decreases gradually to hundreds of meters above the sea level in the northeast of the Dahinggan Mountains, and the Dahinggan Mountains have been characterized by continental deposits since the Early Mesozoic (BGMRHLJ, 1993). Thus, this suggests a magnitude of at least 3–4 km for the total unroofing in the Dahinggan Mountains since the Late Mesozoic, based on the relationship among surface uplift, uplift of rocks and exhumation of rocks (England and Molnar, 1990).

Regional evolution since the Late Cretaceous was probably related to the Farallon- Izanagi and Kula-Pacific ridges subduction toward the NE Asian continental margin (Engelbreton et al., 1985; Northrup et al., 1995; Taira, 2001), and the time of Izanagi–Farallon ridge subduction into NE China may be between 106 and 55 Ma, and basically fit for the movement track of the Pacific Plate and Eurasian Plate from paleogeomagnetism data (Zhao and Coe, 1996; Guo et al., 2007). The peneplain and differential vertical uplift-subsidence movements mainly occur in the Northeastern Asian during the Paleogene, and rifting of the northeastern margin of the Asian continent started at ~22 Ma and was followed by development of the Japan Sea Basin, which separated from the Asian continent between 22 and 15 Ma (Nakamura et al., 1990; Taira, 2001). Back-arc extension continued into the Quaternary, associated with the central eruption style of the Neogene–Quaternary basaltic lavas in NE China (e.g. Basu et al., 1991; Liu et al., 2001; Lei and Zhao, 2005). Apatite FT data from the Songliao Basin, adjacent to the Dahinggan Mountains, indicate that the late stage tectonic movements in the Songliao Basin have zoning in space and episodes in time (Xiang et al., 2007). Clearly, the episodic exhumation of the Dahinggan Mountains since the Late Mesozoic is consistent with these geological processes. Furthermore, integrated with the whole Cenozoic stratigraphic sequences, and structural inversion in the Songliao Basin (Ren, 1999), these sedimentary records also reflect the episodic exhumation of the Dahinggan Mountains during the Late Mesozoic–Cenozoic. Therefore, the FT data and modeling are reliable.

5.2. Exhumation geodynamics

If the Late Mesozoic–Cenozoic episodic exhumation of the Dahinggan Mountains was simply caused by the Pacific plate
subduction beneath the Eurasian Plate, the far-field effect of the Pacific plate subduction would lead to that the onset of the exhumation occurred in the Late Mesozoic, and that the FT ages became younger westwards gradually in the Dahinggan Mountains. However, because the collision between North China and Siberia around 160 Ma obstructed the westwards movement of the lithosphere induced by the Pacific plate subduction, which caused the thickened lithospheric delaminating from west edge of the northeast China-Mongolia block at ~160 Ma and extended gradually eastwards. Mantle upwelling and underplating resulted in

![Fig. 5. Cartoons for the episodic exhumation of the Dahinggan Mountains since the Late Mesozoic. (a) The first exhumation during the Late Cretaceous, (b) the subsequent slow exhumation during the Paleogene, and (c) the second rapid exhumation during the Neogene-Quaternary. (See text for details.)](image-url)
volcanism migrating from the west to the east in northeastern Asia during the Late Mesozoic (Wang et al., 2006). Consequently, the onset time of the exhumation seemed to occur later as FT ages became younger eastwards gradually in the Dahinggan Mountains.

Hence, we could deduce that the onset time of exhumation was at least varied, possibly resulted in the dissimilar FT ages in the west and the east of the Dahinggan Mountains. However, neither diverse FT ages nor conspicuous deformation of the exposed granitoids occurred in the west and the east of the Dahinggan Mountains, and the exhumation appears to be simple since the Late Mesozoic.

In case the exhumation of the Dahinggan Mountains was just caused by the intracontinental orogeny associated with asthenospheric upwelling, it seemed to be able to better explain how the pattern of shallow basin-mountain responded to the deep geological processes, and the basalt eruption occurred in the rift basins, but inconveniently interpret how such episodic exhumation as well as geodynamical mechanism of the Dahinggan Mountains has taken place since the Late Mesozoic.

Therefore, we propose a combination of the Pacific plate subduction and the intracontinental orogeny associated with asthenospheric upwelling that better accounts for the uplift and denudation of the Dahinggan Mountains since the Late Mesozoic. The scenario of the three-stage exhumation is described below.

(1) The first rapid exhumation and contemporary magmatic activity during the Late Cretaceous (~90–57 Ma) were caused by the intracontinental orogeny associated with asthenospheric upwelling, as a result of the subduction of the Farallon–Izanagi and Kula-Pacific ridges toward the NE Asian continental margin (Fig. 5a).

(2) Subsequent slow exhumation during the Paleogene (~57–20 Ma) was the postorogenic uplift and denudation process, mainly caused by the post-subduction extension in the region (Fig. 5b).

(3) The second rapid exhumation under the compression regime during the Neogene and Quaternary (~20–0 Ma) was predominantly controlled by the subduction of the Pacific plate beneath the Eurasia Plate (Fig. 5c).

This model does not only provides a better explanation for the characteristics of FT data, but are compatible with the occurrence of the intracontinental orogeny of the Dahinggan Mountains, and magmatic activities closely related to the Pacific plate subduction (Lin et al., 1998; Ge et al., 1999; Shao et al., 1999, 2005; Wu et al., 2000, 2005; Deng et al., 2004; Lei and Zhao, 2005). Further, this study allows us to understand the tectonic geomorphology and its evolution of the Dahinggan Mountains since the Late Mesozoic, whilst it offers new isotopic geochronology to recognize the evolution of the NE China and neighboring regions since the Late Mesozoic.

This model, however, suggests that the Late Mesozoic–Cenozoic exhumation of the Dahinggan Mountains is markedly distinct from that of the Yanji area in the east of Songliao Basin, mainly led by the subduction of the Pacific plate beneath the Eurasian Plate (Li et al., 2010), and slightly different from that of the Lesser Hinggan Mountains in the northeast of Songliao Basin, resulted from the Pacific plate subduction combined with intracontinental orogeny associated with asthenospheric upwelling (Li and Gong, in press). This implies the varied exhumation history of different regions in NE China together with neighboring regions.

6. Conclusions

Zircon and apatite FT ages and thermal history modeling results reveal that the Dahinggan Mountains have experienced a three-stage cooling history spanning the Late Mesozoic and Cenozoic eras. Two distinct periods (~90–57 Ma and ~20–0 Ma) of rapid cooling, and inferred exhumation history can be identified from zircon and apatite FT ages, and modeling time–temperature paths, respectively. The slow cooling, and inferred exhumation history between the two rapid exhumation processes of ~57–20 Ma can be recognized from apatite FT ages and modeling. As this exhumation process can not simply be ascribed either to the Pacific plate subduction or to the intracontinental orogeny, we believe that their combination can better explain the exhumation of the Dahinggan Mountains since the Late Mesozoic.

Acknowledgements

We thank two anonymous reviewers and Prof. Bor-ming Jahn for their constructive comments and suggestion, which are helpful for us to improve the manuscript significantly. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 40572124, 41072158 and 90814008). This is contribution NO. 1332 from GIGCAS.

References

Johnson, C., 1997. Resolving denudational histories in orogenic belts with apatite fission track thermochronology and structural data: an example from southern Spitsbergen. Tectonophysics 252, 125.

Li, X.M., Gong, G.L., in press. Late Mesozoic–Cenozoic extensional history of the Lesser Hinggan Mountains, NE China, revealed by fission track thermochronology. Geologica Sinica 81, 945–948.

X. Li et al. / Journal of Asian Earth Sciences 42 (2011) 123–133