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Abstract Multi-robot systems (MRS) are a group of robots that are designed
aiming to perform some collective behavior. By this collective behavior, some goals
that are impossible for a single robot to achieve become feasible and attainable.
There are several foreseen benefits of MRS compared to single robot systems such
as the increased ability to resolve task complexity, increasing performance, relia-
bility and simplicity in design. These benefits have attracted many researchers from
academia and industry to investigate how to design and develop robust versatileMRS
by solving a number of challenging problems such as complex task allocation, group
formation, cooperative object detection and tracking, communication relaying and
self-organization to name just a few. One of the most challenging problems of MRS
is how to optimally assign a set of robots to a set of tasks in such a way that optimizes
the overall system performance subject to a set of constraints. This problem is known
as Multi-robot Task Allocation (MRTA) problem. MRTA is a complex problem
especially when it comes to heterogeneous unreliable robots equipped with different
capabilities that are required to perform various tasks with different requirements
and constraints in an optimal way. This chapter provides a comprehensive review on
challenging aspects of MRTA problem, recent approaches to tackle this problem and
the future directions.
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1 Introduction

Multi-robot systems (MRS) are a group of robots that are designed aiming to perform
some collective behavior. By this collective behavior, some goals that are impossible
for a single robot to achieve become feasible and attainable. MRS have been on the
agenda of the robotics community for several years. It is only in the last decade,
however, that the topic has really taken off, as seen from the growing number of
publications appearing in the journals and conferences. One of the reasons that the
topic has become more popular is the various foreseen benefits of MRS compared
to single robot systems. These benefits include, but are not limited to the following:

• Resolving task complexity: some tasks may be quite complex for a single robot
to do or even it might be impossible. This complexity may be also due to the
distributed nature of the tasks and/or the diversity of the tasks in terms of different
requirements.

• Increasing the performance: task completion time can be dramatically decreased
if many robots cooperate to do the tasks in parallel.

• Increasing reliability: increasing the system reliability through redundancy
because having only one robot may work as a bottleneck for the whole system
especially in critical times. But when having multiple robots doing a task and one
fails, others could still do the job.

• Simplicity in design: having small, simple robots will be easier and cheaper to
implement than having only single powerful robot.

These benefits have attracted many researchers from academia and industry to
investigate the applicability of MRS in many pertinent areas of industrial and com-
mercial importance such as intelligent security [1], search and rescue [2], surveillance
[3], humanitarian demining [4], environment monitoring [5, 6] and health care [7].

In order to develop and deploy robustMRS in real-world applications, a number of
challenging problems needs to be solved. These problems include, but are not limited
to, task allocation, group formation, cooperative object detection and tracking, com-
munication relaying and self-organization to name just a few. The following section
discuses in details the task allocation problem as one of the challenging problems of
MRS.

MRTA problem is one of the most challenging problems of MRS especially when
it comes to heterogeneous unreliable robots equipped with different types of sensors
and actuators and are required to perform various tasks with different requirements
and constraints in an optimal way. This problem can be seen as an optimal assignment
problem where the objective is to optimally assign a set of robots to a set of tasks
in such a way that optimizes the overall system performance subject to a set of
constraints.

In spite of the great number of MRTA algorithms reported in the literature, impor-
tant aspects have, to date been given little attention. These aspects include but are not
restricted to allocation of complex tasks, dynamic task allocation, heavily constrained
task allocation and heterogeneous allocation.
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The main objective of this chapter is to provide a comprehensive review on
challenging aspects of MRTA problem, recent approaches to tackle this prob-
lem and the future directions. The remainder of the chapter is organized as fol-
lows: Sect. 2 describes MRTA problem as one of challenging problems of MRS.
Section3 highlights different MRTA schemes and planning followed by discussing
different organizational paradigms that can be used in Sect. 4. Section5 reviews
two well-known MRTA approaches, namely, metaheuristic-based and market-based
approaches. Finally conclusion and future directions are summarized in Sect. 6.

2 Multi-robot Task Allocation (MRTA) Problem

MRTA problem addresses the question of finding the task-to-robot assignments in
order to achieve the overall system goals [8, 9]. This can be divided into two sub-
problems. First, how a set of tasks is assigned to a set of robots. Second, how the
behavior of the robot team is coordinated in order to achieve the cooperative tasks
efficiently and reliably. Because the problem of task allocation is a dynamic decision
problem that varies in time with phenomena including environmental changes, the
problem should be solved iteratively over time [10]. Thus, the problem of task allo-
cation becomes more complex to tackle. The requirements of the particular domain
under consideration affect the features and complexity of multi-robot task allocation
problems [11].

2.1 Problem Formulation

As illustrated in Fig. 1, MRTA can be formulated as an optimal assignment problem
where the objective is to optimally assign a set of robots to a set of tasks in such a
way that optimizes the overall system performance subject to a set of constraints.

Fig. 1 MRTA problem
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In this problem, it is given:

1. R: a team of mobile robots ri ; {i = 1, 2, . . . n}.
2. T : a set of tasks ti j ; { j = 1, 2, . . . nt}.
3. U: a set of robots’ utilities, ui j is the utility of robot i to execute task j.

For a single sensor task, the problem is to find the optimal allocation of robots to
tasks, which will be a set of robot and task pairs [12]:

(r1, t1), (r2, t2), . . . (rk, tk) f or 1 ≤ k ≤ m (1)

For the general case, the problem is to find the optimal allocation of a set of tasks
to a subset of robots, which will be responsible for accomplishing it [13]:

A : T → R (2)

In some MRTA approaches such as market-based approaches (Sect. 5.1), each
robot r ∈ R can express its ability to execute a task t ∈ T, or a bundle of tasks G ⊆ T
through bids br (t) or br (G). The cost of a bundle of tasks can be simply computed
as the sum of costs of the individual tasks:

br (G) =
f∑

k=1

br (tk) {tk ∈ G} (3)

where f is the number of tasks of the bundle G. The group’s assignment determines
the bundle G ⊆ T of tasks that each robot r ∈ R receives.

2.2 Problem Modeling

Many methods have been proposed in the literature to model the MRTA problem as
described in the following sections.

2.2.1 Discrete Fair Division

The MRTA problem can be seen as an example of a Fair Division Problem [14].
Given a set of N robots (r1, r2, . . . rN ) and a set of tasks S. It is required to divide S
into N shares (s1, s2, . . . sN ) so that each robot gets a fair share of S. A fair share is
a share that, in the opinion of the robot receiving it, is worth 1/N of the total value
of S.

Fair division problems can be classified depending on the nature of the set of
shares S into two kinds:
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• Indivisible tasks, such that each item should be given entirely to a single robot.
• Divisible tasks, which are often modeled as a subset of a real space. Additionally,
the set to be divided may be homogeneous, or heterogeneous. Thus the set of the
dividable tasks should be given to homogeneous or heterogeneous robot team.

Two different schemes have been reported in the literature to deal with discrete fair
division problems. The first scheme is called the method of sealed bids [15] at which
each bidder submits a secret sealed bid. The bids are kept private until the closing of
the bidding period. After the auction closes, the bids are opened by the auctioneer
and the auction winner is determined. The winner will be the one with the highest
bid price. The second scheme for discrete fair division is the method of markers
[16]. In this method, the tasks could be arranged in a linear fashion. This may be the
case when a large number of small tasks need to be shared. The N available robots
indicate their opinion as regard a fair division by placing N − 1 markers and agree
to accept any segment of the tasks that lies between any pair of their consecutive
markers. The next step is to find the leftmost among the consecutive markers. The
owner of this marker receives the first segment (the one from the left end and up to the
marker itself) and all the remaining markers of that robot are removed from further
consideration. This step is repeated until all robots received what they think a fair
share in their opinion. Fair division-based MRTA approach is described in [17]. This
approach only addresses the allocation of a single global task between a group of
heterogeneous robots.

2.2.2 Optimal Assignment Problem (OAP)

As mentioned previously, MRTA can be seen as an example of optimal assignment
problem. In this type of problems [18], given a set of robots R, a set of tasks T the
goal is to maximize the profit W(rt) made by assigning robot r to task t. By adding
virtual tasks or robots with zero profitability, it can be assumed that R and T have
the same size n which can be written as R = r1, r2, . . . rN and T = t1, t2, . . . tN .

Mathematically, the problem can be stated: given an n × n matrix W, find permu-
tation π of 1, 2, 3, . . . n for which:

n∑

i=1

w(ri tπ(i)) is maximized (4)

Suchmatching fromR to T is called an optimal assignment. Related tomulti-robot
task allocation, the goal is to assign the set of robots R to the set of tasks T such that
the profit is maximized [19].

2.2.3 ALLIANCE Efficiency Problem (AEP)

The alliance algorithm is a mono-objective optimization algorithm that was first used
to solve NP problems [20]. It has been generalized to tackle any mono-objective
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optimization problem [8], and has been used to solve artificial life problems and
robotics problems [9]. In this algorithm, several tribes, with certain skills try to
conquer an environment that offers resources needed for their survival [20]. Two
features characterize each tribe: the skills and the resources necessary for survival.

A tribe t is a tuple (xt , st , rt , at ) composed of:

• a point of solution space xt

• a set of skills st = [st,1, st,2, . . . st,Ns ] that depends on the values of Ns objective
function S = [S1, S2, . . . SNs ] evaluated at xt :

st,i = Si (Xt )∀i = 1, 2, . . . Ns (5)

• a set of resource demands rt = [rt,1, rt,2, . . . rt,Ns ] that depends on the values of
the NR . Generally there is only one constraint function:

rt = R(xt ) (6)

• An alliance at that records the IDs of the tribes allied to tribe t.

2.2.4 Multiple Traveling Salesman Problem

The Multiple Traveling Salesman Problem (mTSP) is a generalization of the Trav-
eling Salesman Problem (TSP) in which more than one salesman is allowed
[21, 22]. Given a set of cities, and m salesmen, the objective of is to determine
a tour for each salesman such that, starting from the same base city, each salesman
visits at least one city and returns to the base city so as to minimize the total cost. The
cost could be distance or time. A comprehensive study of 32 formulations for the
multiple traveling salesman problem is investigated in [22] considering their relative
performances. The presented formulations differ by the way the sub-tour elimination
constraints are modeled. Thus, the models can be accordingly classified as follows:
(i) those that are based on the ranking of the cities; (ii) those that are based on explicit
time-indexed variables for ranking the cities, and (iii) those that are based on multi
commodity flow constructs.

The main difference in the mTSP is that instead of a single salesman, a number
of salesmen m are given. The salesmen are required to cover all the available nodes
and return back to their starting node such that each salesman make a round trip.
The mTSP can be formally defined on a graph G = (V, A) where V is the set of n
nodes and A is the set of arcs. Let C = (ci j ) be the distance matrix associated with
A. Assuming the more general case which is an asymmetric mTSP, thus ci j �= c ji ∀
(i, j) ∈ A. The mTSP can be formulated as follows [23]:

xi j =
{
1 if arc (i, j) is used in the tour

0 otherwise
(7)
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minimize
n∑

i=1

n∑

j=1

ci j × xi j (8)

n∑

j=2

x1 j = m (9)

n∑

j=2

x j1 = m (10)

n∑

i=1

xi j = 1, j = 2, . . . , n (11)

n∑

j=1

xi j = 1, i = 2, . . . , n (12)

xi j ∈ {0, 1},∀(i, j) ∈ A (13)
∑

i∈S

∑

j∈S

xi j ≤ |subTour| − 1, ∀S ⊆ V \{1}, subTour �= φ (14)

where (8) represents the objective function which is the summation of the total
distance traveled, (9) and (10) ensures that exactlym salesmen departed their starting
node and returned back. Equations (11)–(13) are the usual assignment constraints.
Finally, (14) is the sub-tour elimination constraint.

A number of variations of the original mTSP were introduced by different
researchers to accommodate the mTSP to their problems. These variations included
the following [23]:

• Salesmen starting node: all the salesmen may start from a single depot node and
then all of them must return back to the same node or every salesman can start
from a certain node, and thus each salesman must return back to his starting node.

• Number of salesmen: the number of salesmen used in different applications varies
according to the type and requirements of the application itself. In some applica-
tions, the number of salesmen is dynamic such that after each iteration the number
of salesman may or may not change.

• City time frame: in some applications the task of the salesman is not only to visit
the city, but also to stay in the city for a certain time in order to move to the next
city.

• Fair division of salesmen: another variation of the general mTSP is the addition
of constraints that specify themaximum number of cities or themaximum distance
that can be traveled by a single salesman. This variation can be used in applications
that are concerned with the fair division of the available resources (salesmen).

In [24], the MRTA problem is modeled as a multi-traveling salesman problem
considering that robots play the roles of the salesmen and the tasks are the same as
cities.
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3 MRTA Schemes and Planning

As illustrated in Fig. 2, existing task allocation schemes can be categorized according
to several dimensions [25]:

• Single task (ST) versus multi-task (MT), related to the parallel task performing
capabilities of robots,

• Single robot (SR) versusmulti-robot (MR), related to the number of robots required
to perform a task, and

• Instantaneous assignment (IA) versus time extended assignment (TA), related to
the planning performed by robots to allocate tasks.

ST means that each robot is capable of executing as most one task at a time,
while MT means that some robots can execute multiple tasks simultaneously. Very
similarly, SR means that each task requires exactly one robot to achieve it, while MR
means that some tasks can require multiple robots. In IA approaches the available
information concerning the robots, the tasks, and the environment permits only an
instantaneous allocation of tasks to robots (i.e. tasks independence is a strong assump-
tion). These approaches are sometimes used in order to avoid the need for highly
computationally scheduling algorithms. At the other extreme, there are continuous
task allocation or time extended assignment approaches where more information is
available, such as the set of all tasks that will need to be assigned. Because robots
have to reason about the dependencies between tasks, TA is more demanding from
a planning perspective [26].

From the perspective of planning, there are two common approaches to the task
allocation problem: decompose-then-allocate and allocate-then-decompose. In the
first technique, the complex mission is decomposed to simple sub-tasks and then
these sub-tasks are allocated to the team members based on their capability and
availability to complete the sub-tasks as required [27, 28]. In this type of techniques,
the cost of the final plan cannot be fully considered, because the task decomposition

Fig. 2 MRTA schemes
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is done without knowing to whom tasks will be allocated. Another disadvantage of
this type is inflexibility to changes in the designed plan. So, the plan designed by the
central agent cannot be rectified even if it is found costly. On the other side, in the
allocate-then-decompose approach [28], the complex tasks are allocated to mobile
sensors, and then each mobile sensor decomposes the awarded tasks locally. The
main disadvantage of this approach is the allocation of all tasks to only one mobile
sensor and thus, the preferred task decomposition is purely dependent on the plan of
thatmobile sensor, which increases the possibility of reaching a sub-optimal solution.
It may be more beneficial to allocate tasks to more than one mobile sensor in order
to consider different plans for the required task. While the decompose-then-allocate
and the allocate-then-decompose methods may be capable of finding feasible plans,
there are drawbacks to both approaches.

4 Organizational Paradigms

MRTA approaches can be classified according to team organizational paradigm.
This paradigm shows how the multiple robots/agents of the system are organized by
specifying the relationships and interactions among the agents and the specific roles
of each agent within the system. The following subsections describe centralized and
decentralized organizational paradigms.

4.1 Centralized Approaches

In this type of systems, each agent maintains a connection to one central agent
that allocates the tasks to the other agents. Thus, the separate agents send all the
information they have to this central agent, which in turn processes this information
and sends the appropriate commands to these agents to execute the assigned tasks.
The advantages of this type include the reduction of duplication of effort, resources,
and increased savings of cost and time [29]. Although the centralized systems are
widely implemented in the literature [30], there are many disadvantages that restrict
the use of this paradigm in multi-robot task allocation. The lack of robustness is
one of the most important disadvantages of the centralized system. In other words,
if the central agent fails, the whole system will fail. Also, the system scalability is
restricted because all the agents are connected to the central agent that is considered
as a bottleneck. Practically, fully centralized approaches can be computationally
intractable, brittle, and unresponsive to changes. Thus, formulti-robot task allocation
problems where number of robots and tasks are small and the environment is static or
global state information is easily available, centralized approaches are the best-suited
solution. The centralized approach is one of the most widely reported approaches
in the literature for solving the task allocation problems [31]. In [32], a centralized
algorithm is proposed to solve the MRTA problem in order to assign tasks to mobile
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Fig. 3 Hierarchical organizational paradigm

robots to extend the life time of the sensor network. Also in [33], a centralized
approach is introduced to solve theMRTA for the inspection problem in an industrial
plant. Fair division-based MRTA approach described in [17] is another centralized
algorithm that allocates a single global task between a group of heterogeneous robots.

4.2 Decentralized Approaches

Decentralization is the process of dispersing the administrative tasks and authorities
between the agents of the multi-agent system [29]. In this type of configuration,
there is no centralized agent that allocates the tasks to the other agents. Each agent
is communicating its information with the other agents. Each agent can work on its
own without major consideration of the other agents. Also, sometimes an agent of
the decentralized system needs to exchange information with other agents in order
to achieve its mission efficiently in harmony with other agents.

Many decentralized approaches are proposed to solve MRTA problem. In [34],
the authors proposed a decentralized implementation of the Hungarian method pro-
posed in order to solve the MRTA problem. In [35], two decentralized auction-
based approaches, namely, the consensus-based auction algorithmand the consensus-
based bundle algorithm are proposed for solving the MRTA problem of a fleet
of autonomous mobile robots. Also an evolutionary computation decentralized
approach is proposed for solving the MRTA problem using genetic algorithm in
[36]. Hierarchical market-based approach has been proposed in [26] as a decentral-
ized approach forMRTA problem. As shown in Fig. 3, the tasks are allocated initially
to the robots 1; 2; 3; and 4 via a central auctioneer 5. Each robot can hold auctions
in rounds for the tasks it won in the initial auction.
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The main advantage of the decentralized system is its robustness. For example,
in distributed systems, if one of the agents fails, the other agents are still working on
their own and/or cooperatively with others [37]. As there is no centralized agent as a
bottleneck, new agents can be added in case of failure for example. This means that
scalability is no longer an issue in decentralized systems. In general, decentralized
approaches have many advantages over centralized approaches such a flexibility,
robustness, and low communication demands. However, because a good local solu-
tion may not sum to a good global solution, decentralized approaches can produce
highly sub-optimal solutions.

5 MRTA Approaches

The following subsections describe two of most commonly used MRTA approaches,
namely market-based approaches and optimization-based approaches.

5.1 Market-Based Approaches

Market-based approach gained a considerable attention within the robotics research
community because of several desirable features, such as the efficiency in satisfying
the objective function, robustness and scalability [9]. The market-based approach is
an economically inspired approach that provides a way to coordinate the activities
between robots/agents. It is mainly based on the concept of auctions. In economic
theory, an auction is defined by any mechanism of trading rules for exchange [38].
An auction is a process of assigning a set of goods or services to a set of bidders
according to their bids and the auction criteria. Auctions are common and simple
ways of performing resource allocation in a multi-agent system.

Market-based approaches for MRTA problem involve explicit communications
between robots about the required tasks. Robots bid for tasks based on their capa-
bilities. The negotiation process is based on market theory, in which the team seeks
to optimize an objective function based upon robots utilities for performing partic-
ular tasks [13]. The following subsections provide more details about auctions, and
winner determination strategies.

5.1.1 Auctions

Auctions, in one form or another, have been used in societies throughout history
to allocate scarce resources among individuals and groups. Generally, any protocol
that allows agents to indicate their interest in one or more resources or tasks is
considered an auction. This makes auctions very important to consider when tackling
many applications. Moreover, auctions provide a general theoretical structure for
understanding resource allocation among self-interested agents. Since auctions are
simply mechanisms for allocating goods, there are various types of auction that can
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achieve this goal. These auctions can be divided into two main categories, simple-
good auctions and combinatorial auctions. Figure4 shows taxonomy for different
auctions types.

5.1.2 Auction Design

The auction has several designs that can be used to solve multi-robot task allocation
problem. In this section some of these designs are defined and discussed.

• Contract Net Protocol (CNP): CNP is a task-sharing protocol in multi-agent
systems. It specifies the interaction between agents for autonomous competitive
negotiation through the use of contracts. Thus, CNP allows tasks to be distributed
among multi-agents. Smith in 1980 was the first one to apply CNP to a simu-
lated distributed acoustic sensor network [39]. The contract net protocol enables
dynamic distribution of information via three methods:

– Nodes can transmit a request directly to another node for the transfer of the
required information.

– Nodes can broadcast a task announcement in which the task is a transfer of
information.

– Nodes can note, in its bid on a task, that it requires particular information in
order to execute the task.

The details of CNP algorithm as shown in Fig. 5 and it works as follows:

• Announcement stage: an agent takes up the role of the coordinator/auctioneer
and announces the tasks or a set of tasks to be available for bidding.

• Submission stage: after calculating the individual utility values based on the objec-
tive function, individual agents/bidders communicate this value to the coordinator
agent.

Fig. 4 Auctions types
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Fig. 5 Contract net protocol algorithm

• Selection stage: after receiving all the bids from the bidders, the job of the auction-
eer is to evaluate the received bids based on an optimization strategy to determine
the winning agent.

• Contract stage: the winning agent get assigned by a contract to execute the task
and the process loops all over again.

The main contribution of the contract net protocol is that it offers structuring high-
level interactions between nodes for cooperative task execution. Wherever, the main
drawback is that each agent is a self-interested agent; meaning that the final solution
may be the best for the agents involved, but not for the group as whole [40].

• Trader-Bots: Trader-Bots approach appliesmarket economy techniques for gener-
ating efficient and robust multi-robot coordination in dynamic environments. The
top level of Trader-Bots architecture consists of multiple traders; one trading agent
for each robot, plus other trading agents representing operators or other resources
such as computers and sensors. Each trader has the ability to reason about tasks
and resources in order to make rational decisions when negotiating contracts [12].
The objective functions for this approach are designed to reflect the nature of the
application domain. These functions reflect the domain characteristics in terms of
priorities for task completion, hard deadlines for relevant tasks, and acceptable
margins of error for different tasks. The goal in this algorithm is to have a team of
robots which can complete the tasks efficiently maximizing overall profits, while
maximizing the individual profits for each robot as well. The main advantages of
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this algorithm are self-organization, learning and adaptation, and robustness [12].
The trader representing a robot is called a RoboTrader, and the trader representing
an operator is called an OpTrader. For single-task contracts, Trader-Bots uses first-
price sealed-bid auctions in generating the efficient coordination [13]. Trader-Bots
makes use of two modes of contracts; subcontracts and transfers.

– Subcontract: the bidder is agreeing to perform a task for the seller at a given
price, and must report back to the seller upon completion to receive payment.

– Transfer: the right to perform a task is sold for a price and the payment goes
from the seller to the buyer upon the awarding of the contract.

5.1.3 Pros and Cons of Market-Based Approaches

Market-based approaches have several advantages such as [12, 38]:

• Efficiency: one of the greatest strengths ofmarket-based approaches is their ability
to utilize the local information and preferences of their participants to arrive at
an efficient solution given limited resources [32]. Market-based approaches have
elements that are centralized and other elements that are distributed [32]. Thus
they can produce efficient solutions by capturing the respective strengths of both
distributed and centralized approaches. It has been shown in [26, 32, 41, 42] that
efficient solutions can be produced by market approaches with respect to a variety
of team objective functions.

• Robustness: as mentioned previously, fully centralized approaches employ a sin-
gle agent to coordinate the entire team in a multi-agent system. They may suffer
from a single point of failure, and have high communication demands. Market-
based approaches implemented based on decentralized paradigm do not require
a permanent central coordinator agent and therefore there is no common-mode
failure point or vulnerability in the system. These approaches can be made robust
to several types of malfunctions, including complete or partial failures of agents
[32, 38, 43].

• Scalability: as mentioned before, the computational and communication require-
ments of market-based approaches are usually manageable, and do not prohibit
these systems from providing efficient solutions because they are not fully cen-
tralized systems. Thus, as the size of the inputs in the system increases, these
approaches can still provide an efficient solution [32]. Market-based approaches
can scale well in applications where the team mission can be decomposed into
tasks that can be independently carried out by small sub-teams [38]. However
and as concluded in [42], optimization-based approach outperforms market-based
approach in handling large-scale MRTA scenario (fifty tasks and fifteen robots).

• Online input: market-based approaches are able to seamlessly incorporate the
introduction of new tasks [41]. Market-based approaches can often incorporate
online tasks by auctioning new tasks as they are introduced to the system or
generated by the agents themselves [38].
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• Uncertainty: market-based systems are able to operate in unknown and dynamic
environments by allowing team members to adapt cost estimates over time, and
reallocate tasks when appropriate [44].

Although market-based approaches have many advantages, they are not without
their disadvantages. Perhaps the biggest drawback of market-based approaches is the
lack of formalization in designing appropriate cost and revenue functions to capture
design requirements [45]. Also, negotiation protocols, developing appropriate cost
functions, and introducing relevant penalty schemes can complicate the design of the
market approach [12]. In domains where fully centralized approaches are feasible,
market-based approaches can bemore complex to implement, and can produce poorer
solutions [45]. Also, when fully distributed approaches suffice, market-approaches
can be unnecessarily complex in design and can require excessive communication
and computation [45].

5.2 Optimization-Based Approaches

Optimization is the branch of applied mathematics focusing on solving a certain
problem in the aim of finding the optimum solution for this problem out of a set of
available solutions. This set of available solutions is restricted by a set of constraints,
and the optimum solution is chosen within these constrained solutions according to a
certain criteria. This criteria defines the objective function of the problem that quanti-
tatively describes the goal of the system [46]. There is a wide variety of optimization
approaches available, and the use of these approaches depends on the nature and the
degree of complexity of the problem to be optimized. Moreover the optimization-
based approaches algorithms have higher potential for exploring new search areas in
the search space because the randomness of the algorithmvariableswhich also enable
an enhancedperformancewhendealingwith noisy input data [47–49]. Figure6 shows
a general classification of optimization techniques [50].

Deterministic techniques follow a rigorous procedure and its path and values of
both design variables and the functions are repeatable. For the same starting point,
they will follow the same path whether you run the program today or tomorrow.
Deterministic techniques include numerical and classical methods such as graphical
methods, gradient and hessian based methods, derivative-free approaches, quadratic
programming, sequential quadratic programming, penalty methods, etc. They also
include graph-based methods such as blind/uninformed search and informed search
methods.

Stochastic techniques always have some randomness. These techniques can be
classified into trajectory-based and population-based algorithms. A trajectory-based
metaheuristic algorithm such as simulated annealing uses a single agent or solution
which moves through the design space or search space in a piece-wise style. A better
move or solution is always accepted, while a not-so-good move can be accepted
with certain probability. The steps or moves trace a trajectory in the search space,
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Fig. 6 Optimization techniques

with a non-zero probability so that this trajectory can reach the global optimum. On
the other hand, population-based algorithms such as genetic algorithms, ant colony
optimization and particle swarm optimization use multiple agents to search for an
optimal or near-optimal solution.

By reviewing the literature, it was found that different optimization approaches
have been used in order to solve the general task allocation problems and MRTA
problem. In [51], a mixed integer linear programming optimization approach was
used in order to allocate heterogeneous robots for maximizing the coverage area of
the regions of interest. Also in [52], a mixed integer linear programming approach
was used for solving the task allocation problem in the context of UAV cooperation.
In [53, 54], a simulated annealing approach was used to solve the allocation of multi-
robot system through formulating theMRTAproblemasmTSP. In [55, 56], simulated
annealing incorporated with other heuristic approaches was used to allocate a set of
tasks to a number of processors in computer system problems.

Different optimization approaches were also used for solving the task allocation
problem. For example, population-based approaches such as the genetic algorithm
was used in [57] for providing a feasible solution for a group tracking systemwhich is
capable of tracking several targets rather than individual targets. Genetic algorithm
was also used in [58] to provide a solution for the time extended task allocation
of multi-robots in a simulated disaster scenario. Ant colony optimization, another
technique of the population-based optimization approaches, was used in [59] to solve
the task allocation problem of MRS. In [60], ant algorithm was used in the context
of multi-robot cooperation for the aim of solving the task allocation problem.

The task allocation problemwas also solved using hybrid optimization approaches
such as tabu search with random search method in [56] and tabu search with noising
method in [61]. In [62], a simultaneous approach for solving the path planning and
task allocation problems for a MRS is proposed, where simulated annealing and
ant colony optimization approaches were investigated and applied for solving the
problem.
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Fig. 7 Extending mTSP formulation for MRTA

Trajectory-based metaheuristics and population-based metaheuristics have been
proposed in [42]. These two optimization-based approaches were extensively tested
over a number of test scenarios showing the efficacy of the proposed algorithms
in handling complex heavily constrained MRS applications that include extended
number of heterogeneous tasks and robots. Figure7 illustrates the extension of the
mTSP formulation to accommodate the requirements of the MRTA problem. Since
most real MRS applications require heterogeneous robots of different capabilities,
it was a must to consider the heterogeneity of the robots in the proposed approach.
Four main features of the robot were considered and thus were added to the traveling
salesman in the implementation phase. The four features are velocity of the robot;
robot capabilities; energy level of the robot and aging factor (efficiency). In the
same manner, the mTSP formulation for solving the MRTA problem needed to be
adapted to handle the heterogeneity of the tasks and therefore it was a must to add
extra features to the cities. The added features to the cities are task requirements and
minimum time required to finish the task.

A comparative study betweenmetaheuristics-based andmarket-based approaches
is reported in [42]. This study quantitatively evaluates the performance of these two
approaches in terms of their ability to produce feasible solutions that maximize
overall system performance and decrease the costs and the ability to handle real-
world constraints such as time constraints and robot capabilities-task requirements
matching constraints. Scalability is also considered as an evaluation metric in this
study. The experimental results using different scenarios show that metaheuristics
approaches outperformmarket-based approach in the scalability scenario while both
approaches provide nearly similar results in the constraints handling scenarios. The
results of this compartive study is presented in Table1. The suitability of the algo-
rithms depends on the required application domain of the MRTA problem. The stars
evaluate the algorithm’s efficiency in handling the application scenario, i.e. more
stars means better algorithm [42].

6 Conclusion

This chapter reviewed the different challenging aspects of multi-robot task allocation
problem, the recent approaches to tackle this problem and the future directions. The
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Table 1 MRTA approaches applicability results

Scenario/algorithm Market-based Simulated annealing Genetic algorithm

Small-scale � � �

Medium-scale � � � � � �

Large-scale � � � � � �

Capabilities matching � � � �

Time matching � � �

Heavily constraints � � NA

chapter also discussed twowell-known approaches, metaheuristic-based andmarket-
based approaches that are used extensively to solve the MRTA problem. Many of the
reviewed approaches are capable of handling complex task allocation with different
forms of constraints such as time constraints and robot capabilities-task requirements
matching constraints.

Multi-robot task allocation with ability to handle more complex constraints is
still open and needs to be tackled by researchers. These complex constraints can be
categorized into environment-related constraints, robot-related constraints and task-
related constraints. Environment-related constraints include, but are not limited to,
the dynamic and unpredictable nature of the environment and its partial observability
and complexity. Robot-related constraints can include limited sensing/acting range,
limited radio coverage and partialmalfunctions. Task-related constraintsmay include
time extended tasks and tight tasks that cannot be decomposed into single robot tasks
or tasks with precedence constraints.
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