Technical note

Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimum results

O. Tziavoua,1, S. Pytharoulia,⁎, J. Souterb

a Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK
b Survey Solutions Scotland, Bilston Glen Industrial Estate, 14 Dryden Rd, Loanhead EH20 9LZ, Scotland, UK

\textbf{ARTICLE INFO}

Keywords:
UAV
Fixed wing
VTOL
Mapping
Image resolution
Engineering geological survey

\textbf{ABSTRACT}

UAVs have been used in engineering for at least two decades, mainly focusing on structural health monitoring, geological surveys and site inspections, especially at cases where a rapid assessment is required, for example after a natural disaster. While there is a wide range of recognition algorithms for the automatic identification of structural damage, structural geological features etc. from the acquired images, the parameters affecting the resolution of these images are often overlooked. As a result, the UAV technology is not used at its full potential and at times, it is even regarded as leading to poor outcomes. This paper discusses the main parameters affecting the resolution of the images acquired by a UAV. We present a case study of the structural geological mapping of a coastal area carried out using two types of UAVs: a fixed wing and a hexacopter. A comparison between the structural geological maps based on the orthophotos and one produced using conventional techniques shows that the level of detail is the same and the time spent is at least 5 times less when using a UAV. The fixed wing is faster and therefore, can cover large areas while the copter gives better resolution images as it can fly at lower heights. The latter is cost and time effective only if it is used for surveys limited to small areas. The characterization of some structural geological features has not been possible based solely on the orthophotos. We show that in order to achieve the desired accuracy, a ground sample distance of at least half that value is required. We discuss technical aspects, such as the effect of topography and UAV orientation on the overlap value, the camera calibration, number of control points and lighting conditions, that should be taken into account prior to flying a UAV and provide recommendations on how to obtain optimum results, i.e. orthophotos that suit the needs of the project.

1. Introduction

Unmanned Aerial Vehicles (UAVs) allow for the effective monitoring of large areas of land and existing infrastructure within a very short time compared to conventional techniques, a favourable characteristic, especially at cases where urgent intervention is required, e.g. when a natural disaster occurs, e.g. a rock slide (Greenwood et al., 2016; Tannant et al., 2017); 2016 Kaikura earthquake, New Zealand (Erickson, 2017), or when inspection is necessary but the site cannot be accessed due to Health and Safety concerns, e.g. 2011 Fukushima earthquake, Japan (Ackerman, 2011). The main principle is that a UAV takes aerial images, incorporated with spatial data based on GNSS and/or Inertial Measurement Unit (IMU), over an area to finally produce a high resolution 3D point cloud that can be used for a wide range of geological, civil/mining engineering applications and projects. The images are all processed to form a single image (mosaic) representing the area of interest. This image is geometrically corrected (orthomosaic) and georeferenced and can be used to extract information such as distances and locations, in the same way as a map.

UAVs have significantly developed during the last decades. They operate remotely in the form of small platforms carrying cameras and, for the majority of applications, are available as small or micro aircrafts or Vertical take-off and landing (VTOL) copters with four (quadcopters), six (hexacopters) or more propellers (Hackney and Clayton, 2015; Jordan, 2015). Currently, most of them are equipped with GNSS receivers and/or other sensors (e.g., Inertial System sensors, etc.). Telemetry facilities are frequently deployed for data transmission and/or management in almost real time when an immediate reaction is necessary (Jordan, 2015). The leading application of UAVs is undoubtedly 3-dimensional (3D) mapping, visualisation and modeling, thus contributing to applications such as topographic surveys, photogrammetric solutions, progress monitoring, disaster analysis, archaeological

⁎ Corresponding author.
1 E-mail address: stella.pytharouli@strath.ac.uk (S. Pytharouli).
2 Deceased on 5th March 2017.

https://doi.org/10.1016/j.enggeo.2017.11.004
Received 8 June 2017; Received in revised form 5 November 2017; Accepted 5 November 2017
Available online 07 November 2017
0013-7952/ © 2017 Elsevier B.V. All rights reserved.
mapping, agriculture and forestry (e.g., Remondino et al., 2011; Niethammer et al., 2012; Draeyer and Strecha, 2014; Cryderman et al., 2015). A detailed discussion on the evolution of UAVs and the state of the art of this technology is given in a review work by Watts et al. (2012) and Colomina and Molina (2014). The latter conclude that the majority of commercial applications is supported by UAVs, the market of which is progressively developed: the UAV production, the civil/commercial applications and the research on UAVs have increased by 68%, 78% and 55%, respectively, between 2005 and 2013 (Colomina and Molina, 2014; Table 1, p. 80).

With the ever increasing use of UAVs there have been a number of studies focusing on the efficiency of UAVs in geotechnical, geological and other engineering applications. Siebert and Teizer (2014) used a UAV technology for the estimation of position errors and volume uncertainty estimation in construction and other civil engineering projects (e.g., roadworks, excavation, mining works, etc.). Error in heights was determined at the level of about 4 cm when the flight level was at 30 m and the difference in a volume of 440 m³ was found to be approximately 9% as compared to the figure obtained by conventional surveying using GPS. Similar results and techniques are also reported in Draeyer and Strecha (2014) for the determination of stockpile volumes and in Raeva et al. (2016) for the case of mining in quarries.

Engineering geology mapping surveys include detailed mapping of the outcrop, annotation of all features, names, dips and strikes that allow for the characterization of the site. UAVs can produce a very detailed image of the outcrop (e.g. Peng et al., 2017; Martínez-Martínez et al., 2017) but, in most cases, there is the need for someone to go on site for reconnaissance (Cawood et al., 2017). New developments on algorithms and image processing techniques permitted the automatic identification of types of rocks, faults, dip and strike measurements so manual work can significantly be reduced, e.g. Michilethwaite et al. (2012); Stumpf et al. (2013); Vasuki et al. (2014); Bemis et al. (2014).

Based on the reviewed literature, there are no easily accessible guidelines available regarding the choice of some of the parameters that greatly affect the quality of photos and consequently the orthomosaic obtained from a UAV e.g. overlap between photos, flight height, light conditions, specifications of the lens and camera, and weather conditions. As a result, if the user is not experienced or does not have a basic knowledge on surveying and photogrammetry (quite common considering the wide range of UAV user backgrounds), a poor quality orthomosaic is produced on which an automated image algorithm can do little. This frequently leads to the misconception that a poor outcome is always due to limitations of the UAV technology. This paper focuses on the use of UAVs for engineering mapping surveys and makes recommendations on the parameters that should be considered prior to flying a UAV in order to achieve optimum resolution of the obtained images. A case study on the mapping of structural geological features at an outcrop along the coast of South Ayrshire (Scotland) is also presented.

2. Principles of photogrammetry and choice of flight parameters

There are a number of technical parameters that need to be considered prior to flying a UAV: the required resolution of the orthophotos, the flight height, the overlap between the photos, the lens and camera characteristics. These parameters are important because they, not only affect the resolution of the obtained images, but also the time spent on site and the post-processing time and effort for the production of the point cloud and the orthomosaic. In addition, the resolution of the final orthomosaic significantly affects the amount of information that can be extracted and any results obtained from the use of automatic feature detection algorithms.

For engineering geological mapping surveys, a spatial resolution of less than 10 cm is generally good. This translates to a requirement of maximum 10 cm/pixel, i.e. the Ground Sample Distance (GSD, the distance on the ground between the centres of two adjacent pixels) should be 10 cm/pixel or less. For a certain GSD, the flight height depends on the focal length \(F_h \), the sensor width \(S_w \) and the number of pixels per photo width \(P_n \) (He et al., 2012)

\[
F_H = \frac{GSD \cdot F_L \cdot P_n}{S_w}
\]

where

- \(F_H \) is the flight height (m)
- \(GSD \) is the ground sample distance (m)
- \(F_L \) is the focal length (mm)
- \(P_n \) is the number of pixels per image width
- \(S_w \) is the sensor width (mm)

From eq. 1 it is evident that keeping the flight height, number of pixels per image width and sensor width the same and increasing the focal length, results in a better GSD, i.e. spatial resolution. For example, for a flight height of 75 m, a sensor width of 35.9 mm and 7360 pixels per image width, a lens with 15 mm focal length gives a GSD of 2.4 cm/pixel. This value becomes equal to 1.5 cm/pixel and 1 cm/pixel for a lens with focal length of 25 mm and 35 mm, respectively.

However, the GSD and the camera used are not the only parameters that should be considered before choosing the flight height. Other factors to be accounted for are the flight time and the number of images required to cover a specific area. Both depend on the overlap percentage, i.e. the percentage of the same area on the ground covered by adjacent images as shown in Fig. 1b. In general, an overlap value of more than 60% for the forward overlap and at least 20% for the side overlap is considered adequate in photogrammetry in order for an orthomosaic to be created. In practice, for UAVs, a higher overlap value, e.g. 80%–85%, would minimize the possibility of gaps in the orthomosaic and is recommended (Campbell and Wynne, 2011). However, it might not always be achievable due to camera triggering limitations and the flight parameters. For example, in the absence of wind, a UAV that flies at 23.5 m/s equipped with a camera that has a triggering limitation of 1 Hz will need a flight height at which 23.5 m represents 20% of the along track image footprint to achieve an 80% forward overlap. For a sensor size of 24 mm and a focal length of 35 mm, it needs 175 m above ground level to achieve an along track image footprint that lets the camera capture 80% forward overlap. This flight height might not allow for the desired image resolution. Furthermore, there might be additional limitations, e.g. the maximum flight height in the UK is 500 ft. (approximately 152 m) (Civil Aviation Authority, 2016) which means that a flight height of 175 m is not permitted.

From trigonometry, the Ground distance \(G_{DS} \) (footprint perpendicular to the flight line) is related to the flight height \(F_h \), the focal length \(F_L \) and the sensor width \(S_w \) as (see Fig. 1a for reference).

\[
G_{DS} = (F_h/F_L) \cdot S_w
\]

Similarly the Ground distance \(G_{DY} \) (footprint along the flight line) is given by.

\[
G_{DY} = (F_h/F_L) \cdot S_t
\]

where \(S_t \) is the sensor size in the direction perpendicular to the flight line.
The flight line spacing F_{LS} (Fig. 1b) is given by

$$F_{LS} = G_{DS} \times (1 - \text{side overlap})$$ \hspace{1cm} (4)

while the number of flight lines N_{FL} is equal to

$$N_{FL} = \frac{W}{F_{LS}}$$ \hspace{1cm} (5)

where W is the width of the surveyed area.

The distance between the images D_i is given by

$$D_i = G_{DS} \times (1 - \text{forward overlap})$$ \hspace{1cm} (6)

The number of images per flight line of length L is

$$N_i = \frac{(L + G_{DY}/2)}{D_i}$$ \hspace{1cm} (7)

and the total number of images per flight is equal to

$$N_{FL} = N_{FL} \times N_i$$ \hspace{1cm} (8)

For example, the Sony A7R camera has a sensor size 39.5 mm × 24 mm. If the area to be surveyed is 200 m × 100 m, using a lens with a focal length of 15 mm and a flight height of 75 m would result in a ground distance (footprint) for each photo of 197.5 m × 120 m (Eqs. (2) and (3) respectively). The spacing between the flight lines for an overlap of 80% (0.8) is 39.5 m (Eq. (4)) and the number of flight lines required for an area of width 100 m is 3 (rounded up from Eq. (5)). The distance between the images is 24 m (Eq. (6)) and the number of images per flight line (length equal to 200 m) is 11 (rounded up from Eq. (7)). This brings the total number of acquired images for this area to 33 (Eq. (8)).

For the Sony A7R camera (mounted on Trimble UX5 HP fixed wing) Fig. 2 summarises how the GSD, the flight time and the number of acquired images change with the flight height and the focal length (lens) for a survey area of 1 km × 1 km. Numbers in Fig. 2a and c have been calculated using Eqs. (1)–(8) while Fig. 2b numbers were calculated using the Trimble Flight Calculator (http://uas.trimble.com/calculator).

From Fig. 2 it is evident that the focal length of the camera plays a significant role on the flight height as it can result in the same or even better resolution at twice the flight height to the one achieved by a lens with a smaller focal length (Fig. 2a). Choosing a higher flight height reduces the flight time (Fig. 2b) and the post-processing time since the number of acquired images covering the same area is significantly smaller.

When the camera and focal length (lens) do not change, the impact of the flight height on the image resolution, the flight time and number of images is more prominent. Fig. 3(a) and (b) show the effect of the flight height on the change of the GSD, the number of images acquired

and the flight time (calculated using the Trimble Flight Calculator) for a survey area of 1 km² and 0.01 km², respectively. The results refer to an Olympus E-PL7 camera with a 14 mm lens, mounted on Trimble ZX5.
This allowed for a wider range of flight height values compared to those for the fixed wing. As can be seen from Fig. 3a, the resolution of the images (GSD value) could be better than 0.1 cm/pixel, however, this would require 326 flights (or at least 4.5 days for a maximum time of 20 min per flight for the ZX5). Even if the flight time was acceptable, the total number of acquired images (~1,550,000) would have made the post-processing impossible. A relatively manageable number of images, i.e. less than 8000, for a commonly used computer, would translate to a flight height of 75 m or less for a 1 km² survey area. But the required flight time is still quite high at 435 min (more than 7 h) resulting in the need of 22 flights. Even at a flight height of 150 m, the required number of flights to cover the 1 km² area would be 10.

These numbers reduce by at least 2 orders of magnitude if the area to be surveyed is smaller as shown in Fig. 3b. While the value of the GSD does not change for the same flight height between Fig. 3(a) and (b), the differences in the required flight times and number of acquired images are significant. An area of 0.1 km × 0.1 km can be surveyed with a single flight (16 min) at 25 m flight height, resulting in a GSD value smaller than 1 cm/pixel.

The choice in the range of values used for the flight height in Figs. 2 and 3 was dictated by aviation regulations. In the UK, the maximum flight height above ground level (AGL) and the maximum horizontal distance from the person in charge are defined by the Civil Aviation Authority (CAA) as 122 m (400 ft) and 500 m (Visual Line Of Sight, VLOS) and 152 m (500 ft) and 750 m (Extended VLOS, EVLOS), respectively. In other European countries the flight height is 150 m, in the US it is 400 ft. (122 m). There are also limitations due to the UAV technology itself. For example, for the fixed wing and the hexacopter used in this study, the minimum flight height is 75 m and 20 m (for an autonomous flight), respectively.

3. Case study: structural geological mapping of a sedimentary outcrop in South Ayrshire (Scotland)

We tested the UAV technology on a project demanding high resolution: the structural geological mapping of a fault zone outcrop in Scotland’s south-west coast. The field area is located on Whitehouse Shore, a rocky beach a few miles south of the town of Girvan, South Ayrshire. The outcrop has well exposed sedimentary and structural geological features (Fig. 4) and is located within an Ordovician inlier in the Midland Valley Terrane (McCay, 2014). The area has been mapped in detail as part of previous projects (Lawson and Weedon, 1992; McCay, 2014) and therefore, constituted a favourable site that allowed
Table 2: Flight plan parameters for the Whitehouse Shore outcrop survey.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UX5 HP</th>
<th>ZX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight height, FH (m)</td>
<td>79</td>
<td>30</td>
</tr>
<tr>
<td>Area length, L (m)</td>
<td>120<sup>a</sup></td>
<td>56<sup>a</sup></td>
</tr>
<tr>
<td>Area width, W (m)</td>
<td>55<sup>b</sup></td>
<td>64<sup>b</sup></td>
</tr>
<tr>
<td>Forward overlap (%)</td>
<td>87</td>
<td>89</td>
</tr>
<tr>
<td>Side overlap (%)</td>
<td>87</td>
<td>89</td>
</tr>
</tbody>
</table>

^a These are nominal dimensions as the actual shape of the areas surveyed with the UX5 HP and ZX5 was not rectangular.

for comparisons between the previously generated maps from conventional geological mapping surveys and maps generated as part of this case study based solely on orthomosaics.

The UX5 HP (fixed wing) and ZX5 (hexacopter) of TRIMBLE were used for the data collection for this case study (Fig. 4 inset). Their main technical characteristics are provided in Table 1.

For the field measurements, two flights were planned using the UX5 HP and the ZX5 copter. Table 2 summarises the parameters considered for the flight plan.

The field measurements at Whitehouse Shore lasted about four hours including necessary work prior to the flights on the establishment of five control points along the beach. The take-off of the UX5 HP took place at a location approximately 500 m away from the beach. The flight lasted 8 min. The flight with the ZX5 lasted approximately 14 min. The take-off and landing took place directly on the beach area. Fig. 5 (a) and (b) show the final orthomosaics obtained from the UX5 HP and ZX5, respectively.

Using the orthomosaics and software ‘Trimble Business Centre, TBC’, two structural geological maps were produced and presented in Figs. 6 and 7. These maps contain the main geological formations of the area under consideration, such as thrust faults, strike-slip faults, fractures, joints and other geological structures. Several thrust faults (shown as red dashed lines in Figs. 6 and 7, respectively) have been recognised over the field site. Another significant geological feature of the field site, clearly observed and delineated, is the middle or main strike-slip fault also shown in the maps. It is represented by a thick red line labelled “Main Fault Gully”. Also, a splay is illustrated close to the main strike-slip fault showing almost the same direction. The main-strike slip fault contains an extensive uncremented brecciated zone which is composed by pebbles and sand (blue area in Figs. 6 and 7).

This zone is also present near the splay fault and is labelled “covered zone”. The covered zone is surrounded by two rocks; red mudstone and green mudstone (shown as grey and green area, respectively, in Figs. 6 and 7). Sandstone bands are observed along the red mudstone. Furthermore, a series of joints and shear fractures are clearly detected mainly around the strike-slip fault. Shear fractures are primarily characterised over the study area by their small scale offsets of the sandstone bands and thrust faults, as it is also reported in McCoy (2014). Shear fractures are quite different from the strike-slip faults not only concerning their smaller offset but also due to their simple composition. Two typical cases of shear fractures labelled as ‘Fracture with Green Halo’ and ‘Carbonate Vein’ were observed. The colour and resolution of the images did not allow for the characterization of other visible fractures and joints (labelled as ‘Unidentified Fractures’).

Due to the lower flight height and lower speed (3 m/s as opposed to 23.5 m/s for the UX5 HP) the map produced using the ZX5 orthomosaic is more detailed compared to the map from the UX5 HP. According to the theoretical GSD value for the ZX5, i.e. 0.8 cm/pixel, we should have been able to distinguish objects that (1) have a length or width of at least 8 mm or more, and (2) are 8 mm apart or more. On the SW part of the surveyed area shown in Fig. 7 the geological formation of green mudstone covers a larger area than that of Fig. 6 due to the high resolution of ZX5 that made possible to identify the limit of the green mudstone in the orthomosaic. This was not possible to achieve in the orthomosaic of UX5 HP where the limits of the formation were not distinct. In addition, in the area covered by red mudstone (NE area), more fractures are detected in the map based on the ZX5 orthomosaic (Fig. 7) compared to those in the map based on the UX5 HP orthomosaic (Fig. 6) despite the fact that for the vast majority of them, their nature remains unidentified on both maps.

In an attempt to determine some of the main geometrical characteristics, i.e. width and length, of the structural geological features that were identified in the orthomosaics, we selected a well-defined joint (Fig. 8a). Its length and width were measured in the field and found equal to 0.936 m and 0.034 m, respectively. The length was measured using a measuring tape. The error of these measurements was within 1 mm. The determination of both the width and the length of the joint using exclusively the orthomosaic was not straightforward. Although, the GSD value is very small (0.8 cm/pixel for the ZX5), this does not mean that the accuracy that can be achieved is the same. As shown in Fig. 8c the width of the joint could be defined as the length of the yellow line (0.023 m) or the length of both the blue and yellow lines (0.047 m). The discrepancy is approximately twice the pixel length. For
the joint length, the uncertainty is higher; the end of the joint could be defined at any location along the line defined between A and B in Fig. 8c. The uncertainty here is approximately 24 mm (i.e. three pixels).

The ambiguity in recognizing the edges of faults, fractures and joints is extensively discussed in studies focused on the development of automated recognition algorithms such as that by Kovesi (1999).
4. Discussion

This study focused on the optimum use of UAVs for engineering geology projects and presented a structural geological mapping survey as a case study.

4.1. Comparison with conventional geological mapping surveys

There are two main advantages for the use of a UAV in engineering geological mapping surveys. First, it requires significantly less time and effort to map an area of the same or even much bigger size compared to commonly used mapping techniques. In this study, we focused on an outcrop along the Whitehouse shore that had been mapped before by McCay (2014) using conventional mapping techniques (Fig. 9). The smallest area that was surveyed in our study was that obtained by the ZX5. This area is approximately 3 times bigger than the area presented in Fig. 9. Yet, it took about a fifth of the time (including the time in the field and the post-processing time) to produce a structural geological

Fig. 8. Determination of geometrical characteristics, i.e. length and width, of a joint. (a) zoomed area of the orthomosaic of Fig. 5b. The yellow arrow points at the selected joint. (b) Zoom at the right end of the selected joint in (a). The width of the joint could be determined as the length of the yellow line or the length of the yellow and blue lines. (c) Zoomed area included in the rectangle (yellow dashed line in (b)). There is an ambiguity as to where the joint and the splay joint end. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Detailed geological map of the Whitehouse Shore produced based on conventional geological mapping survey techniques (after McCay, 2014).
map of the same dimensions and of the same level of detail as that in Fig. 9 (personal communication with Alistair McCay on 12/9/2016).

The second merit of using a UAV for structural geological mapping is that the produced orthomosaic is georeferenced. Where it lacks is the identification and characterization of some structural geological features. Although in our study it was possible to identify the feature type for most of them, there were some for which visual inspection was necessary and no safe conclusions could be made based only on the image. It should be noted that the amount of information that can be extracted from an image also depends on the camera calibration (as discussed in the following paragraph) and the experience of the observer. A more experienced geologist or engineer would be more likely able to identify more feature types on an image compared to those identified by a less experienced person. This number would differ again if using an automated recognition algorithm.

4.2. Technical considerations

We show that for favourable weather conditions such as those prevailed in our study, the achieved resolution of the orthomosaic depends on the flight height and the sensor size and lens. The flight height is restricted by the type of the UAV, i.e. copter or fixed wing, the aviation regulations and the application itself. As shown in Fig. 2a the flight height can be increased if using a lens with a bigger focal length or as derived from eq. 1, a bigger sensor size. The last two imply a high resolution camera which, on one hand, might conform with the resolution requirements of a project but on the other, results in increased cost and payload requirements.

For a flight height of more than 80 m, a sensor size of 7360 pixels and a 15 mm lens can achieve a GSD better than 8 mm/pixel, a value that is adequate for most engineering projects. If a lower height is adopted, for example when using a copter, another factor to be considered is the number of images acquired as it significantly affects the post-processing time. The latter depends on the processing software used and the camera. UASmaster (Trimble Business Centre), the software used for the processing of images in this study, can process 100 images within 1–2 h. For 1000 images it takes 6–8 h (this includes tasks such as tie point extraction, Ground Control Point (GCP) measurement and camera calibration/Exterior orientation-EO) plus 1–2 h for deliverable creation. For 8000 images the processing time consists of 24–36 h each for point extraction and GCP measurement/EO and 4–6 h for deliverable creation. These times refer to an Intel Xeon dual processor @ 2.6 GHz and 48Gb RAM and indicate an almost perfect linear relationship between the number of images and the processing time. It should be noted here that for the same processor and number of images, the camera also affects the processing time. For example, a 56MP camera will result in a significantly different, i.e. three times higher, number of pixels per image compared to a 16MP camera.

The number of ground control points (GCP) can significantly affect the accuracy of the orthomosaic (Tonkin and Midgley, 2016). The number of GCPs required depends on the topography and the method used to establish a GNSS position. For example, post-processing kinematic (PPK) and Real-time kinematic (RTK) only require one GCP. This is the minimum GCP number recommended to allow for the control of
the height component of the GNSS measurements. The minimum number in all other cases is at least four or five per flight and their geometrical distribution should be suitable for the site topography (Tonkin and Midgley, 2016).

GCPs are also used for the calibration of the camera. The calibration of the camera models the lens distortion. In most cases it is also important to calibrate for white balance. The latter does not affect the accuracy of the produced orthomosaic but it affects the true colours of the acquired images, which might be significant for projects related to geological mapping. The calibration of a camera for photogrammetric purposes has been extensively discussed in the international literature, e.g. Zhang, 2000; Wang et al., 2008; Balletti et al., 2014.

4.3. User errors

As with every other technology, UAVs require sensible use. In many cases, the result of a UAV survey reflects user errors. One of the parameters that are controlled by the user and affect the quality of the orthomosaic is the forward and side overlap. The recommended value for the forward and side overlap is at least 80% for mapping surveys that require high accuracy (Gatewing, 2013). This might not be always achievable if the shutter speed of the camera is too slow for the chosen flight height and UAV speed. Also it can be compromised by not anticipating the effects of topography and the UAV orientation overlap. An example of the effect of topography on the overlap value is shown in Fig. 10. Fig. 10a shows the orthomosaic of a hill area. The black spots visible at the top left of the image are areas that lacked sufficient tie points (i.e. common points among the images) for the images to be tied together. That particular area of the orthomosaic should depict a hill. Fig. 10b shows the point cloud focusing on that hill. It is rotated so that the noise in the point cloud corresponding to the black spots in the orthomosaic (Fig. 10a) is apparent. In this case the overlap that was chosen by the user was 85% and the flight height 91 m AGL. However, the topography was not flat (presence of a hill) and the take off point was not at the top of the hill but approximately at mid height. As a result, the effective overlap value for the area close to the top of the hill was much smaller (see Fig. 11a) than 85%.

The effect of the UAV orientation and how it compromises the overlap value is shown in Fig. 11b. The pitch, roll and yaw values are known and provided by the inertial system. They help orientate the images correctly, however, that requires a high standards IMU. Even then, if the image isn’t taken in the right orientation, e.g. due to excessive yaw because of unfavourable wind direction, no amount of re-orientation will make the photos overlap.

The wind direction is not the only meteorological factor affecting the quality of a UAV survey. A UAV flight should take place in good light conditions. Although the AutoISO can compensate for unfavourable light conditions, this function might be limited in some cameras. A detailed discussion on poor light conditions during a UAV flight and the resulting artefacts on the acquired images is presented in Whitehead and Hugenholtz (2014).

Another very common misconception is that the accuracy of measurements based on the images acquired by a UAV survey is equal to the value of the GSD. Our case study has shown that this is not true. The GSD value should be at least half the accuracy required by the project in order to minimize the ambiguity introduced by the pixel colourings as shown in Fig. 8.

A UAV is a tool and as such it should be used for the right application. For mapping/monitoring of small areas, i.e. less than 10,000 m², a VTOL (vertical take-off and landing) is more appropriate, while a fixed wing is more suitable for covering larger areas. Fig. 12 shows how the survey of a small area, as the one along the Whitehouse shore presented in this paper, is affecting the shape of the flight lines for a fixed wing aircraft. For the fixed wing aircraft (UX5 HP) the flight lines are not strictly straight above the area under survey as would have been in an optimum case (Fig. 12a). Instead, they are curved along at least half the length of the area of interest due to the turning circle required by the UX5 HP. This results images that have a compromised overlap as shown in Fig. 11b. On the contrary, Fig. 12b shows the flight lines for the ZX5 hexacopter (VTOL) over the same area. In this case, all flight lines are straight and parallel.

5. Conclusions

UAVs are a promising technology with great potential as a tool in engineering geology projects. As every tool, it requires sensible use and more importantly, a good understanding of the surveying principles involved. This technology has already become the Holy Grail in mapping surveys, in many cases totally replacing terrestrial surveying equipment: its ability to cover large areas in very little time is a highly desirable characteristic in an era where quick and effective intervention has become the norm. As shown from this study, this comes with a cost; high resolution images require more expensive sensors or lower flight heights and computers with high processing capacity to allow for
processing of large numbers of images. An engineering approach, such as a compromise between the flight height and the detail that can be derived from the orthomosaics, is required almost at all times, if, for example, cost and time are the driving parameters. Due to the wide availability of UAVs and their ease of use, the number of operators with limited surveying and photogrammetric knowledge is constantly increasing. This study offers comprehensive guidance on the consideration of the main technical parameters in order to utilize UAVs to their maximum potential.

Acknowledgements

The authors would like to thank Survey Solutions Scotland Ltd. for providing access to the UX5-HP and ZX5 for the needs of this study.

Funding sources

This work was funded by the University of Strathclyde.

References

