OBSERVATION ON BED VARIATION IN A MEANDERING LIKE FLUME WITH RIVER TRAINING STRUCTURES

Article - January 2004
DOI: 10.2208/prohe.48.1069

2 authors, including:
Sanjay Giri
Deltares

Some of the authors of this publication are also working on these related projects:
Numerical modelling of river morphodynamics View project
Reservoir Management Project View project
FLOW CHARACTERISTICS IN A MILDLY MEANDERING CHANNEL WITH & WITHOUT RIVER TRAINING STRUCTURES.

Sanjay GIRI1, Yasuyuki SHIMIZU2 and Mutsuhiro FUJITA3

1 Student member of JSCE, Post-graduate student, Dept. of Hydroscience & Environmental Engineering, Hokkaido University (Kita 13, Nishi 8, Sapporo 060, Japan)
2 Member of JSCE, D. Eng., Associate Professor, Dept. of Hydroscience & Environmental Engineering, Hokkaido University (Kita 13, Nishi 8, Sapporo 060, Japan)
3 Fellow of JSCE, D. Eng., Professor, Dept. of Hydroscience & Environmental Engineering, Hokkaido University (Kita 13, Nishi 8, Sapporo 060, Japan)

The experimental study reported herein was carried out in a meandering flume with three consecutive bends. The radius-width ratio was 3 and the arc angles of each bend were 40°, 80° and 40° respectively. The study was performed for various cases of with and without structures. The spur dikes were placed as river training structure in concave part of the bend entrance. The flow field without spur dikes, with one, two and three spur dikes was measured under similar flow conditions in order to assess the effect of the structures. For the sake of comparability, the velocity field throughout the bend reach has been measured in all cases and depicted in non-dimensional form. Some specific features associated with the flow processes in a mildly meandering channel were observed. One of the significant observations in this study is the existence of a dead region near the outer part of subsequent bend induced by the structures placed in preceding bend.

Key Words: Mildly meandering channel, river training structures, spur dikes, recirculation region, shear-layer, critical distance.

1. INTRODUCTION

Several experimental and numerical studies on flow and bed variation around river training structures like spur dike have been performed and still being carried out. The performance of these structures and their effect on riverbed evolution is of great importance from practical engineering point of view. Since no proper and general design criteria have been developed so far, hence their performance is often found to be quite unpredictable, which has been proved by number of field investigations.

Most of the previous studies on flow behavior around such structure were carried out in case of the straight flume and with a single spur dike1. Some studies were performed upon movable bed condition considering mean flow properties to observe local scour near structure2, 3). One of the recent works of Fukuoka et al.4) comprises the counter measures against bed variation using groins in Shinano river. Besides, some studies have been carried out to analyze flow structure in groin region5, 6) & exchange process between groin and main flow region6, 7).

There are some significant numerical studies such as one performed by Muneta & Shimizu8). In this study, a direct numerical calculation of quasi 3D-flow in a straight channel with spur dike was performed in consideration of the secondary flow using Engelund’s cross flow equation. Model reproduced the characteristics of secondary flow well except in few cases in the vicinity of spur dike due to the strong 3D-flow around the structure as described by Shimizu.

It is significant to emphasize that river training structures are usually placed in the bend reach of channel. Moreover, they are placed in series so as to achieve better effect from both bank protection and navigation point of view. Consequently, all previous results are questionable for their general application under such conditions. Furthermore, the effect of the structures on successive bends as well as the interaction between the consecutive bends is also subject of interest from the design point of view. In order to gain better understanding of two-phase motion & their interaction, it is of importance to have an insight into the flow characteristics.
This study can be characterized as explorative with empirical approach. The objective of this study is to achieve an initial insight into the flow structure in bends with and without river training structures not only locally but in further downstream also. Obviously, the flow characteristic in bend with movable bed may be different due to the presence of transverse bed slope, which is typical for strong bend with fully developed bend flow. However, the bed topography in a meandering channel is influenced by flow acceleration or deceleration induced by changeable channel curvature other than cross flow. Consequently, their assessment is necessary for design purpose. Moreover, structure may act as a catalyst in such process. It is thought that all these factors have been overlooked in previous studies and thus suggest itself for the detail analysis of the flow near the vicinity of each structure, in shear-layer and recirculation region as they are associated with sediment entrainment and deposition.

In this study, thorough measurement of stream wise and transverse velocity profiles was performed throughout the bend reach for all cases. The down flow velocity near the structure was also measured. The recirculation region, shear layer & the flow skewness was observed using dye as well.

2. EXPERIMENTAL CONFIGURATION

This experiment was conducted in laboratory flume of Applied Hydrology Laboratory of Hokkaido University. A 28m long and 1m wide rectangle flume with a meandering reach of 7.8m wave length with 3 consecutive bends of 40°, 80° and 40° angles respectively (Fig.1) was constructed on a 28m long and 2.5m wide platform mounted on 4 pairs of synchronized screws with electrical motor slope regulation mechanism. The bed and walls are practically smooth. The upstream and downstream reaches were of 10.2m and 10m respectively, which are sufficient for turbulent flow to be fully developed as well as to avoid backwater effect of tailgate. The bend radius to channel width ratio, $R/B = 3$ ($R= 3m,B=1m$) has been adopted according to the most common curvature and bend migration ratio as reported by many researchers. The width-depth ratio, about 10, corresponds to the streams, where the channel migration is usually observed. In such meandering channel the bend flow does not properly developed due to small bend angle and magnitude. However, fully developed condition is not critical one for design purpose.

The experimental condition has been adopted according to the characteristics of Plane Rivers with mild slope and sub-critical flow. Flow was kept near uniform. The experimental condition has been summarized in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Flow condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach flow depth, d (cm)</td>
</tr>
<tr>
<td>Froude number, Fr</td>
</tr>
<tr>
<td>Reynolds number, Re</td>
</tr>
<tr>
<td>Average velocity, U_o (cm/sec)</td>
</tr>
<tr>
<td>Channel slope (Slope of platform)</td>
</tr>
<tr>
<td>Shear velocity, U^* (cm/sec)</td>
</tr>
</tbody>
</table>

Spur dikes were used as river training structure. The length -1/4 of channel width (25cm) and spacing-3 times spur’s length (75 cm) for spur dikes were decided as a most common design parameter based on previous experience, however a conclusion has been drawn in this regard. Experiment was conducted for four cases: Case1: without spur dikes; Case2: one spur dike was placed at the radial distance of 10° from the bend entrance (concave part); Case3: two spur-dikes were placed at 10°, 15°; Case4: three spur dikes were placed at 10°, 15° and 29° respectively. The flow condition was same for all cases. Physical model was adopted as “Froudian model”. The Reynolds number was relaxed. The approach Reynolds number seems to be smaller than in natural rivers (in our case it was 19950, whereas in natural channels it may be more than 40000). Nonetheless, flow around structures provides “auto-model” even in low approach Reynolds number. The physical model has been attempted to perform experiment without distortion so as to get minimum scale effect and, in turn, similar feature of the flow kinematics. Velocity measurement was performed using a 3D Acoustic Doppler Velocimeter with the frequency of 25 Hz (25 samples/sec) for more than 30 second at each measurement points and obtained time averaged value. The velocity was measured in the radial and tangential directions in 8 to 12 points radially and 7-8 points over depth in each section. Besides, the vertical component of the velocity was also measured near the spur dikes, where it was more pronounced. The velocity measurement was concentrated on near bed region due to its concernment for sediment entrainment from the channel bed. The measurement sections were selected radially at every 2.5° to 10° (more dense near structures). The measurement sections have been numbered as shown in Fig.1.
3. RESULTS AND DATA ANALYSIS

All experimental results have been illustrated graphically in non-dimensional form in order to achieve quantitative notion. Some selected results have only been depicted in this paper. Data comparison for all four cases has been illustrated for the first half of the bends reach due to their likeness for subsequent part.

(1) Stream-wise velocity profiles

The stream-wise velocity profile over the depth and width is plotted for Case1 in Section1 as a typical example as shown in Fig.2 (a). Most of the velocity profiles for the flow away from vicinity of dikes and back-flow region seem to be laid on exponential trendline indicating logarithmic distribution. However only few near-bed values followed Prandtl’s log-law, which is normalized with depth average velocity, can be expressed as

$$ \frac{U_s - U_m}{U_m} = \frac{1}{k} \left(1 + 2.3 \log \frac{Z}{d} \right) $$

where, U_s - stream-wise point velocity; U_m - depth average velocity; U^* - shear velocity; k - Karman constant; Z - vertical coordinate, d - flow depth. Result has been illustrated in Fig.2 (b). The stream-wise velocity profiles in some sections of the first half of the bend reach along the channel for all four cases have been depicted in Fig.3. For the sake of comparability, variation of stream-wise velocity in all four cases along the left bank, right bank, central part as well as along the tip of the dikes has been illustrated in Fig.4. The velocity profile in the case of without dike has shown the higher velocity towards convex part of the bank. As the channel curvature changed its direction, the velocity tended to become higher again in convex bank. This can be seen from Fig.4 (a). This evidence shows contradiction in terms with movable bed condition. Nonetheless, this fact was elucidated by some theoretical and experimental studies on flow with vanished transverse bed slope in a curved channel[15], [16], [17]. In Case2 & 3, a dead region was observed along the outer bank of the second bend. In Case 2, this region was most pronounced, which can be seen from Fig.3 and Fig.4 (d). While in Case1, stream-wise velocity in that region substantially increased. In Case3 & 4, near the vicinity of second spur-dike a strong back flow was
observed that can be seen from Fig.4(e). Stream-wise velocity profile along dikes' tip was found more or less similar for all three cases with dikes. Stream-wise velocity profile along shear-layer in some selected sections has been depicted in Fig.5. The schematic sketches of flow deflection are depicted for Case2 and Case4 in Fig.6, which shows the down flow & deflection near dike1, back flow near dike2 & no deflection near dike3 in Case 4.
were observed to be originated from the tip of the first dike spreading throughout the shear-layer region. Moreover, they were seen to have traveled far downstream. Such eddies may be the supplementary cause of scour holes. The length-width ratio of recirculation region was found to be about 6 in Case1&2 and slightly greater in Case3. The reattachment point was observed to be located near the beginning of the second bend. Similarly, critical distance was found to be about 5 times dike’s length. Critical distance is defined as the distance between the first dike’s tip and the point at separation line where its width becomes equal to the dike’s length. These evidences were confirmed with dye observation as well.

(2) Transverse velocity profiles

In this experiment, the maximum cross-flow velocity (Ur) near the bed was found to be about 10%-13% of average velocity in case of without structure. Variation of near-bed cross-flow velocity along the channel for couple of flow depths in Case1 is illustrated in Fig.7 (a) & (b). These figures show that the skewness has become more pronounced near the bed and changed its direction along of changing channel curvature as well as in upper layer. Presence of the spur dikes significantly produced the secondary current as well as down flow velocity component near the tip of the structure. Flow characteristics near each spur dike were found to be different, which can be seen from Fig.8 and Fig.9. According to Fig. 9, the maximum deflection occurred around first spur dike in all cases. Near dike2 and dike3 the deflection did not occur (Negative value indicates the deflection from left bank, i.e. from dike’s tip). In addition, a strong down flow was observed near the bed, particularly at the tip of the first dike in all cases. The magnitude of these vertical velocity components was measured within the range of 30% to 40% of the average approach velocity. Near the tip of other dikes, absence of down flow was found.

4. SUMMARY AND DISCUSSION

The experimental results have corroborated some past studies as well as added some additional knowledge to them. In the case of without structures, the flow pattern that was found in this experiment is thought to be typical one for mildly meandering channel with short bends & low magnitude. It can be seen from our results that flow accelerates or decelerates near the both bank according as curvature variation & more or less uniform along the center. One important observation in our experiment is the fact of the presence of a
dead region throughout the outer part of second bend, which seems to be influenced considerably by the allocation of training structures in preceding bend. This implies that these structures produce effect not only on nearby region but also in further downstream and such effect is seen to have been influenced by channel configuration. It can be concluded that flow pattern & in turn bed topography with training structures in a mildly meandering channel may have distinctive feature than in straight channel & even in strong bend. The structures placed in one bend may exert substantial influence on flow pattern in subsequent bend having different mass and momentum exchange depending on channel configuration. On the other hand, bed variation near these structures significantly depends on the flow field around them, viz. down-flow, vortices etc. Another noteworthy evidence concerns to the distinctive features of the flow field around each structure, which is obviously influenced by their allocation, in particular, whether subsequent structures have their individual influence on flow or not, in other words, their spacing is more than critical distance as well as recirculation region or not. In our experiment, the distance between first and second dike was kept less than critical while third dike was placed slightly further but within the recirculation region induced by the first dike. So, no significant effect on flow field, caused by third spur-dike, was observed. In this experiment, the length-width ratio of recirculation region was found to be less than those observed in case of straight channel. This may be also due to the channel curvature. It was noted that the maximum constricted velocity occurred in Case2, at the same time a dead region in successive bend was seen to have most pronounced in the same case. As observed in this experiment, constriction ratio is also one of the important factors which may be responsible for sediment entrainment not only from vicinity of dike but opposite bank as well.

Consideration of the channel configuration as well as influence of the structure in further downstream appears to be of great importance, which was apparently overlooked on developed design criteria for river training work. Results of this experiment imply necessity of more rational approach as well as more efficient and economical design criteria, viz. varying the construction volume of structure according to their allocation, simultaneous use of different types of protection techniques etc.

It is thought that our results might provide an initial insight into the flow behavior not only around structures but also in successive downstream region, which would be of importance for the better understanding of the interrelation between the flow and sediment movement in a mildly meandering channel with and without structures.

Apart from all, this experimental data can serve as a benchmark for numerical study. Obviously, this study should be followed by movable bed experiment in terms of more wide range of all variables for its ultimate verification so as to develop an improved technique for river training work.

REFERENCES

4) Fukuoka et al.: Design of bed variation control measures at OjiyaKoshiji in the Shinano river, Journal of hydraulic, Coastal & Environmental Engineering, No.698/II-58

(Received September 30,2002)