Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel

Xun Liu, Shuhuai Lan, Jun Ni *

S.M. Wu Manufacturing Research Center, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

1. Introduction

Growing concerns on energy saving and environmental preservation increase the demand for lightweight vehicles. Considerable volumes of advanced high strength steel sheet have been applied into automotive parts in order to reach the objective of both weight reduction and crashworthiness enhancement. However, further weight reduction of 30% or more is hardly achievable with exclusive dependence on the use of thinner steel sheets. Multi-material vehicle structures is an efficient countermeasure against this problem [1], which necessitates the development of reliable and cost-effective dissimilar material joining technique. One of the desired pairs is aluminum alloy and advanced high strength steel, which is highly difficult to be welded together due to their differences in physical and mechanical properties as well as the formation of large amount of brittle intermetallic compounds (IMC) using traditional fusion welding techniques [2–6].

Friction stir welding (FSW), which was first developed by The Welding Institute (TWI) in 1991 [7], has a solid-state nature and therefore exhibits certain advantages over traditional fusion welding methods. First, it can significantly avoid solidification related problems, such as oxidation, shrinkage, porosity, and hydrogen solubility [8]. Second, the associated low heat input can effectively inhibit intermetallic compound (IMC) layer formation, which makes it a promising solution for dissimilar material joining. Several studies have been carried out on FSW of aluminum alloy to steel sheets. Uzun et al. [9] reported the joint strength between 304 stainless steel and Al 6013-T4 with thickness of 4 mm can reach approximately 70% of the base aluminum alloy. Ghosh et al. [10] did FSW of pure Al to 304 stainless steel and the ultimate tensile strength can achieve 82% of Al. Presence of FeAl was reported. Besides, equiaxed and finer grains exist in the stirring zone, which indicate the involved dynamic recrystallization process. Tanaka et al. [11] welded Al7075-T6 to mild steel of the thickness of 3 mm. Tool rotational speed varies from 400 to 1200 rpm under the welding speed of 100 mm/min. The highest tensile strength they can achieve is 333 MPa, which is about 60% of the base aluminum alloy. Moreover, they reported an exponentially increasing relation-ship between the interface strength and the reducing thickness of IMC layer, which has the composition of FeAl3. Lee et al. [12] did experiments on FW of Al6056-T4 to 304 stainless steel with thickness of 4 mm under the rotational speed of 800 rpm and welding speed of 80 mm/min. The thin intermetallic compound layer of 250 nm thickness was analyzed through transmission electron microscopy (TEM) and identified to be FeAl5. Chen and Kovacevic [13] joined Al6061 to AISI 1018 steel sheet with the thickness of 6 mm. Local melting of Aluminum was observed and shear-off steel platelets encompassed by IMC layers of Fe6Al13 and Fe2Al5 existed in the weld nugget. Locally partial molten Aluminum was again reported by Jiang and Kovacevic [14] when they did study on the same pair of materials with the same thickness.

* Corresponding author. Tel.: +1 (734) 936 2918; fax: +1 (734) 936 0363.
E-mail address: junni@umich.edu (J. Ni).

http://dx.doi.org/10.1016/j.matdes.2014.02.003 0261-3069/© 2014 Elsevier Ltd. All rights reserved.
Intermetallic compounds are found not only in the segregated steel clusters inside the weld nugget but also along the interface between base steel and the nugget. Their constitutions were identified to be Fe₂Al₃ and Fe₄Al₁₁. The severity of IMC reaction depends on locations and more steel is consumed at a distance closer to Aluminum alloy. Movahedi et al. [5] did friction stir lap joint between Al5083 and St-12 mild steel. They found that an intermetallic compound layer with a thickness of less than 2 μm will not degrade joint quality. Similar results were suggested by Lee et al. [15] and they reported that 2μm IMC layers with the composition of Fe₂Al, Fe₃Al, and Fe₄Al₁₁ can contribute to the joint strength. Yilmaz et al. [16] also reported that the Al/Fe interface with a layer of IMC is important to the weld strength but cracks can easily initiate and propagate if the IMC layer is too thick. This statement was further verified by Bozzi et al. [17] when they studied friction stir spot welding of Al6016 to IF-steel and reported that fractures are likely to be generated through the hard IMC tangles when the thickness of IMC layer is larger than 8 μm. In their studies, Fe₃Al, Fe₄Al, and Fe₆Al₃ were observed at different positions using TEM. Chen [18] did process parameter study of FSW on Al6061-T651 aluminum alloy to SS400 steel with the thickness of 6 mm. They indicated that rotational and traverse speed are relatively significant FSW process parameters compared to the tool tilt angle or pin diameter. Furthermore, lower rotational speed and traverse speed can result in higher impact values of joint strength. Their maximum tensile strength can reach 76% of the base Al alloy. Kimapong and Watanabe [19] did FSW lap joint on A5083 to SS400 mild steel and reported a maximum shear strength of about 77% of the aluminum base material. Fe₆Al, Fe₄Al₃, and Fe₆Al₃ were found in the interface corresponding to different tool tilt angles. Chen et al. [20] suggested the Zn coating on steel could improve the weldability of Al and steel through promoting the formation of Al–Zn low melting point eutectic structure. They also reported in another study [21] on FSW lap joint that the thickness of IMC layer increases from 7.7 μm to 58.1 μm with decreasing welding speed, which significantly affect the strength of the joint. The composition was identified to be mainly Fe₂Al₃ and Fe₇Al₃. Watanabe et al. [22] joined SS400 mild steel to A5083 Al alloy with the thickness of 2 mm. The maximum tensile strength they have obtained is about 86% of the base Aluminum alloy when 10% of the cross-sectional area of pin was placed in the steel side. The fracture path was along the interface between Al matrix and Fe fragments. IMCs with the composition of Fe₆Al and Fe₄Al₃ exist at the upper region of the weld interface.

However, all the aforementioned studies selected either mild steel or austenite stainless steel, both of which have a relatively low yield strength. So far, few open literatures have reported FSW of aluminum alloy to advanced high strength steels (AHSS), which is more desirable in lightweight vehicle structures. AHSS consists of four subcategories, i.e. dual phase (DP) steel, transformation induced plasticity (TRIP) steel, complex phase (CP) steel and martensitic steel (MART) [23]. In this work, feasibility of using FSW to join Al 6061 and TRIP 780/800 steel together was investigated and effects of different process parameters were analyzed. Microstructure evolution of the weld was related to mechanical welding forces exerted on the FSW tool and temperature distributions on the workpiece for a thorough understanding of the underlying mechanism.

2. Experiment

Fig. 1(a) shows a schematically axonometric view of the whole FSW experimental arrangements and Fig. 1(b) shows a more detailed cross-sectional view perpendicular to the weld line. TRIP 780/800 steel sheets with the thickness of 1.4 mm were provided by the United States Steel Corporation. Its yield strength (YS) is 780 MPa, which is more than three times of that of Al6061. According to Watanabe et al. [22], steel should be put in the advancing side for admissible joining configurations. The thickness of aluminum alloy Al6061-T6511 is 1.5 mm and its chemical compositions and mechanical properties are listed in Table 1, where UTS stands for ultimate tensile strength.

Blue lines in Fig. 1 indicate the contour of the FSW tool, which consists of a conically tapered non-threaded pin. Specific dimensions of the tool are shown in Fig. 2. To avoid overheating of aluminum, the FSW tool should be shifted towards aluminum. However, partial of the pin need to remain in the steel side to actually stir both materials together. The parameter of tool offset is therefore introduced here as the distance between the tool axis and the faying surface of the two materials. Larger tool offset means the tool is more into aluminum. Since part of the FSW tool will be immersed in the steel side and subjected to severe frictional conditions, refractory materials such as tungsten carbide [24–27], tungsten–rhenium [28], Si₃N₄ [29] and polycrystalline cubic boron nitride (PCBN) [30–32] are required for the tool. In our study, tungsten carbide with 10% cobalt content was selected for its good wear resistance and much lower cost compared with PCBN.

Below the workpieces is a replaceable backing plate made of mild steel, where four holes with diameter of 1 mm were drilled for mounting thermocouples. Type K thermocouples, shown as red spots in Fig. 1, are located symmetrically to the weld line and measure the temperature of the workpiece back surface at distances of 1 mm and 5 mm away from the abutting edge.

The workpiece and replaceable backing plate were assembled onto a specially designed fixture, which was further mounted onto a dynamometer (Kistler 9255B). The dynamometer was used to measure the mechanical welding force in both vertical direction Fz and the direction along joint line Fc. All FSW experiments were performed on the high stiffness M.S. Machining Center under displacement control. Two levels of rotational speed, 1200 rpm and 1800 rpm were investigated under three levels of welding speed and two levels of tool offset. As shown in Table 2, a total of 12 welding conditions were carried out in this study and each condition was repeated three times for average and error bar calculation. R, FT and Offset are abbreviations for rotational speed, welding speed and tool offset respectively, which are frequently referred to in the figures shown in following sessions.

Microstructural analysis using both optical microscopy (OM) and Scanning Electron Microscopy (SEM) were performed on the joint cross sections perpendicular to the weld line. Composition of the interface layer was analyzed using X-ray diffraction (XRD) technique. Tensile specimens perpendicular to the weld line were prepared according to the ASTM: E8 standard. Their specific shape and dimensions are shown in Fig. 3. Thickness of the tensile specimen is the same as the original workpiece but with a transition thickness in the weld area, which was located almost right in the center. All the tensile tests were conducted on the MTS Insight 10 tensile machine at a strain rate of 10⁻³.

3. Results and discussion

3.1. Microstructure overview and material flow visualization

A typical optical macroimage of the joint cross section perpendicular to the weldline is shown in Fig. 4, which reveals a good
weld quality containing neither visible pores nor cracks. A number of black spots in addition to sheared-off steel fragments can be observed to scatter all over the weld nugget with various sizes and morphologies. A continuous steel strip was peeled off from the base TRIP steel side and extruded into aluminum matrix, which illustrates the pattern of material flow during this FSW process. In the advancing side, the materials from aluminum region have been stirred over and pushed against steel. Vertical force exerted by the pin of FSW tool tends to press this part of aluminum and steel downward, which was restricted by the backing plate when they reached the bottom of the nugget. Since total length of the pin is less than the thickness of the workpiece, the materials at the bottom of advancing side were therefore squeezed and move horizontally into aluminum side through the “strait” formed by the end surface of the pin and the backing plate. The softer properties of aluminum matrix make it easier for the TRIP steel to penetrate. TRIP steel will tend to follow the flow of aluminum in the retreating side once being transported through the “strait” as the tool moves forward. An upward motion was clearly exhibited by the embedded TRIP steel in the retreating side. According to Guerra et al. [33] and Colligan [34], the materials tend to be carried away and deposited in the wake of the pin as the tool continuously moves forward. Since a lot more frictional heat are generated by

Table 1
Chemical composition and mechanical properties of the Al6061-T6511 alloy.

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Mechanical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Si</td>
<td>% Mg</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2
Process parameters studied in FSW of Al 6061 to TRIP steel.

<table>
<thead>
<tr>
<th>FSW condition</th>
<th>Rotational speed (R) (rpm)</th>
<th>Welding speed (FT) (mm/min)</th>
<th>Tool offset (Offset) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1200</td>
<td>30</td>
<td>1.03</td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
<td>60</td>
<td>1.03</td>
</tr>
<tr>
<td>3</td>
<td>1200</td>
<td>90</td>
<td>1.03</td>
</tr>
<tr>
<td>4</td>
<td>1200</td>
<td>30</td>
<td>1.63</td>
</tr>
<tr>
<td>5</td>
<td>1200</td>
<td>60</td>
<td>1.63</td>
</tr>
<tr>
<td>6</td>
<td>1200</td>
<td>90</td>
<td>1.63</td>
</tr>
<tr>
<td>7</td>
<td>1800</td>
<td>60</td>
<td>1.03</td>
</tr>
<tr>
<td>8</td>
<td>1800</td>
<td>90</td>
<td>1.03</td>
</tr>
<tr>
<td>9</td>
<td>1800</td>
<td>120</td>
<td>1.03</td>
</tr>
<tr>
<td>10</td>
<td>1800</td>
<td>60</td>
<td>1.63</td>
</tr>
<tr>
<td>11</td>
<td>1800</td>
<td>90</td>
<td>1.63</td>
</tr>
<tr>
<td>12</td>
<td>1800</td>
<td>120</td>
<td>1.63</td>
</tr>
</tbody>
</table>
the shoulder of the rotating tool, top region of the weld will be under a higher temperature and therefore has smaller flow stress than the bottom does. Consequently, relatively larger amount of materials at the top area are moved backward and the materials in the bottom will then try to occupy this available space due to the pressure exerted by the tool. In other words, materials will tend to flow upward. Similar results regarding the upward motion have also been reported by Reynolds [35] and Coelho et al. [36].

3.2. Analysis of Al–Fe interface in the advancing side

In order to examine the metallurgical bonding conditions in the advancing side, scanning electron microscopy (SEM) was employed for higher magnified views. Fig. 5 shows SEM images of the Al–Fe interface under different welding speeds while maintaining the rotational speed of 1200 rpm and tool offset of 1.03 mm. A distinct interfacial layer with a different color from either steel or aluminum can be observed, which indicates a newly formed phase of intermetallic compounds (IMC). The intermetallic layer has a relatively smooth boundary in the dark aluminum side compared with the wavy morphology of the boundary in the bright steel side. These irregularities in steel side could be explained considering crystallization and growth of the IMC. Valleys in the steel side boundary correspond to the initially formed nuclei of IMC, which tend to absorb Al and Fe atoms that have diffused over and grow in both lateral and depth directions under appropriate temperature and pressure conditions. Regions of steel where the lateral growth of IMC nuclei did not reach will therefore leave as wave peaks in the boundary. In some extreme cases, these peaks appear in needle shapes, as shown in the bottom region of Fig. 5(a). Smooth boundary in the aluminum side also indicates that aluminum diffusion is unlikely to be the rate determining step during this IMC formation process. Despite coarse boundaries, overall thickness of this interfacial layer becomes smaller as the welding speed increases, which can be observed in Fig. 5.

The relationship between interlayer thickness and welding speed is consistent regardless of variations on either rotational speed or tool offset, as shown in Fig. 6 where a higher rotational speed of 1800 rpm and larger tool offset of 1.63 mm were applied. The growth kinetics of this interlayer was further quantitatively studied by measuring its thickness under different sets of process parameters. Considering the unsmooth morphology near steel side, measurements were taken at three different subareas of each interface and in each subarea three peaks and valleys of the wavy boundary were selected. Average values of thickness t were calculated in each subarea and plotted with respect to welding speeds v in logarithm scale as shown in Fig. 7. It can be seen that higher rotational speed is able to increase the interlayer thickness. Moreover, larger portion of the tool immersed in aluminum yields a thinner layer. All these phenomena can be explained from the force and temperature measurements during the process, which will be shown in the following sessions.

A linear dependence of $\ln(t)$ on $\ln(v)$ can be observed in Fig. 7. By further calculating the fitting slope, relationships between layer thickness t and welding velocity v under different rotational speeds and tool offsets were summarized in Table 3. Since duration of welding stage with the same welding length is inversely proportional to v, the inverse relationship or inverse parabolic relationship between the thickness and the welding speed can be approximately interpreted as linear or parabolic relationship with time. According to Bouche et al. [37], growth of the intermediate phases will follow linear kinetics if it is governed by chemical reactions or it will follow parabolic kinetics if the rate determining step is interdiffusion. The linear relationship under rotational speed of 1200 rpm and tool offset of 1.03 mm indicates a reaction controlled interphase growth while the process under other three conditions are likely to be controlled by diffusion. Furthermore, the wavy boundary in the steel side indicates iron atom diffusion in TRIP steel rather than aluminum atom diffusion is the rate determining step. These different kinetics suggest the formation of different types of IMC.

Composition of the IMC layer was identified using X-ray Diffraction (XRD) technique and results are shown in Fig. 8. The most likely existed phases are determined based on the figure of merit.
(FOM) values calculated by the XRD analysis software JADE. It can be seen that welding speeds have no influence on the type of IMC that is going to form. Furthermore, only under the condition where rotational speed is 1200 rpm and tool offset is 1.03 mm can the FeAl phase be generated. Fe$_3$Al is formed under all other conditions, which are in agreement with the above results on interlayer growth kinetics.

3.3. Nugget characteristics

A series of SEM images taken at different positions in the weld nugget are shown in Fig. 9. Steel fragments of various sizes and morphologies can be observed not only inside but also outside of the stirred over steel strip. More importantly, all of them are encompassed by an intermetallic layer, which implies chemical reactions occurred instead of simply mixing between these sheared off steel platelet and aluminum matrix. Furthermore, it is not only the steel fragments that exist, particles of intermetallic compounds also distribute independently in the nugget with much smaller size, which is usually around 2–5 μm for the largest dimension. Some of them may fall off during polish process and leave black holes in these figures. Formations of these particles were most likely through reaction between sheared off small steel particles and aluminum matrix. In these cases, the steel particles are completely consumed. Since intermetallic compound (IMC) possesses a much higher hardness than either Al or Fe, the nugget could be considered as an IMC enhanced aluminum matrix. This conclusion was later verified through tensile tests, where the nugget exhibited satisfying strength compared with other regions of the weld.

3.4. Temperature distribution and thermal history

Temperature distribution on the back surface of workpiece under different process parameters was shown in Figs. 10 and 12–14. X-axis represents relative locations of the thermocouples with regard to the abutting edge. Aluminum side is denoted as negative values so that the ordinal positions of temperature points in these figures are visually consistent with those in the experimental setup shown in Fig. 1. Y-axis represents the peak temperature that has been recorded at this position during the whole FSW process. Temperature measuring points are symmetric to the abutting edge. However, since FSW tool was shifted more into Al side in all our experiments, they are asymmetric to the tool, which is also the heat source. It can be seen that the temperature at 1 mm position in Al side is slightly higher than that in steel side, which can be interpreted by the closer distance to the FSW tool. Besides, according to Nandan et al. [38], local heat generation rate during FSW can be approximately given by:

\[
dq \approx w r \delta \mu \rho + (1 - \delta) r \tau \rho \text{d}A
\]

where \(w \) is the tool rotational speed, \(r \) is the radial distance from the tool axis, \(\delta \) represents the extent of slip, \(\mu \) is the friction coefficient, \(\rho \) is the local pressure corresponding to the mechanical welding.
force and \(\tau_s \) is the shear yield strength of the stirred material. When considering FSW of dissimilar materials in this study, the heat generation comes from friction and plastic deformation of both materials. Therefore, Eq. (1) can be revised as follows:

\[
q \approx w \left\{ \int_{A_1} T \left(\delta_{Al} H_{Al} P + (1 - \delta_{Al}) \tau_{Al} \right) dA_{Al} + \int_{Fe} T \left(\delta_{Fe} H_{Fe} P + (1 - \delta_{Fe}) \tau_{Fe} \right) dA_{Fe} \right\}
\]

(2)

Since the original thickness of Al sheet is 0.1 mm larger than that of steel, which requires the shoulder of the tool to penetrate Al for 0.1 mm before it can rub against the upper surface of steel. Accordingly, a lot more heat is generated on tool shoulder in Al side through plastic deformation in addition to friction. On the other hand, heat generated by steel plastic deformation comes primarily from the small portion of the pin immersed in steel, which is relatively small and accounts for the lower temperature at 1 mm point in steel side. The temperature at 5 mm position in Al side is greatly higher than that in steel side due to the much higher thermal conductivity of aluminum compared with steel.

Fig. 10 compares the temperature distribution under different welding speeds with rotational speed of 1800 rpm and tool offset of 1.63 mm. It can be seen that welding speed has an insignificant effect on the temperature distribution in Al side. Similar results were also reported by Barnes et al. [28]. Smaller welding speed can slightly increase the temperature in steel side, which could be explained from the aspect of thermal history. Fig. 11 shows the effect of welding speed on thermal history at 1 mm position in Al side under the same rotational speed and tool offset as before. It can be seen that although welding speed could hardly influence the peak temperature, larger welding speed can directly reduce the high temperature period and elevate heating and cooling rate. Consequently under a small welding speed, heat generated in Al side can have a longer time to be conducted into steel and raise the temperature. Similar results regarding the effect of welding speed on temperature distribution are shown in Fig. 12, where a smaller rotational speed of 1200 rpm was applied. Furthermore, the thermal history result helps explain the effects of welding speed on the IMC layer thickness in advancing side. Since formation of IMC layer relies on diffusion and reaction of aluminum and iron atoms, longer high temperature period enables generation of larger amount of IMC. Accordingly, lower welding speed can increase the thickness of the IMC layer as shown in Fig. 7.

Effects of different rotational speeds on the temperature distribution are shown in Fig. 13. It can be observed that temperature in both aluminum and steel side is higher under a larger rotational speed and this conclusion is consistent regardless of welding speed.

Fig. 8. XRD diffraction patterns of the interfacial layer under different process parameters where FT represents different welding speeds (a) rotational speed: 1200 rpm; tool offset: 1.03 mm; (b) rotational speed: 1200 rpm; Tool offset: 1.63 mm; (c) rotational speed: 1800 rpm; tool offset: 1.03 mm; (d) rotational speed: 1800 rpm; tool offset: 1.63 mm.
speeds. Influence of rotational speed on temperature will accordingly affect IMC layer growth. Since higher temperature help facilitate diffusion and reaction, higher rotational speed can increase the interlayer thickness as shown in Fig. 7.

Fig. 10 shows effects of different tool offsets on temperature distribution. It can be seen that the overall temperature will increase when the tool is shifted more towards aluminum, which further indicates that the average heat generation density in the aluminum side is larger than that in steel side under our current configuration. However, the general trend of temperature variation is barely consistent at the 1 mm point in steel side, which can be explained based on the relative position of FSW tool and
this temperature measuring point. As can be seen from Fig. 1, under a tool offset of 1.03 mm the stirring edge of the pin is right above this temperature measuring point. This position receives not only the frictional heat from tool shoulder but also dissipated plastic energy generated by the pin, which has the largest value at the pin periphery. On the other hand, when the tool is moving...
further into aluminum by 0.6 mm, the stirring edge of the pin will be away from the 1 mm point in steel side and makes less contribution of heat conduction, which results in a relatively lower temperature.

3.5. Mechanical welding force

FSW experiments conducted in this study are displacement controlled, the force exerted by FSW tool on workpiece will therefore vary depending on different process conditions. Fig. 15 compares the vertical force F_z reached during stable welding stage, which represents the required pressure for confining the material within the weld when translating the tool. X-axis represents welding speed. Rotational speeds are distinguished by colors and tool offsets are expressed using different line types. Overall, F_z increases slightly with the traverse welding speed whereas the relationship is weak in the studied in this work, which is in agreement with the temperature measurement results. Larger rotational speed and tool offset can effectively reduce F_z.

Fig. 16 shows the lateral moving force F_x reached during stable welding stage under different sets of process parameters. Similar to the trend of vertical force, the lateral force F_x increases slightly with the welding speed but is not sensitive to this factor. On the other hand, higher rotational speed and especially tool offset can effectively reduce the lateral moving force F_x.

3.6. Relationship between process parameters and the Al–Fe interface

Formation and growth of intermetallic compound at the interface of dissimilar materials basically contain three stages [39]. The first stage involves generation of supersaturated solid solution due to diffusion of atoms in the interface. This solid solution will transform into IMC in the second stage when its composition reaches to the saturation level at corresponding temperature and pressure conditions. In the third stage, solute atoms will diffuse into the formed IMC layer for it to grow gradually. Several researches have been conducted regarding the interlayer formation and growth between molten Al and solid Fe [37,40–43]. According to their studies, Fe$_2$Al$_5$ and FeAl$_3$ are more likely to be formed in the temperature range of 700–900°C. On the other hand, for IMC with low aluminum composition, basically FeAl and Fe$_3$Al, can only be formed at a higher temperature of over 1000°C. The Al–Fe phase diagram [44] under atmospheric pressure is shown in Fig. 17, which indicates the formation of Fe$_2$Al at the temperature of about 552°C by a first order reaction of FeAl while FeAl is formed through a peritectic reaction under a much higher temperature.
temperature of around 1310 °C. However, based on the temperature measurement results shown in Figs. 10–14, the highest temperature at the back surface of the workpiece in all the experiments conducted in this study was less than 500 °C. Since the thickness of Al sheet is 1.5 mm and TRIP steel is 1.4 mm, the temperature variation can hardly achieve 500 °C in this thin region. In order to account for the formation of FeAl and Fe$_3$Al at this relatively low temperature, effects of pressure which corresponds to the mechanical welding force during FSW needs to be taken into consideration. It was reported in [39] that an increase in pressure can cause formation of interface layer at lower temperature under constant diffusion time. During FSW process, both vertical and lateral welding force will raise the pressure in the weld and therefore promote intermetallic reaction. Furthermore, during FSW, materials near the pin are suffering from severe plastic deformation at a high strain rate, which also enhances diffusion and IMC reaction. It is suggested that short-circuiting along static and moving dislocations, grain boundaries and cracks generated during deformation are the main causes for this diffusion enhancement [45]. These defects consequently facilitate atoms from different species to occupy available lattice sites of the original species and form IMC. In summary, the formation and growth of IMC layers depend closely on temperature, mechanical welding force and material deformation status, all of which are determined by process parameters. Higher rotational speed can effectively increase the temperature in the weld, reduce welding force in both vertical and lateral direction according to the previous temperature and welding force measurement results. In addition, it can also increase the material strain rate, which should be positively correlated with the line speeds of the corresponding points on the tool. Therefore higher rotational speed can enhance the diffusion process to a great extent and more IMC was generated. Welding speed has an inappreciable effect on either temperature distribution or mechanical welding force. Furthermore, its influence on the material deformation rate is

![Graph showing the effects of various process parameters on lateral moving force during welding stage.](image)

Fig. 16. Effects of various process parameters on lateral moving force F_x during stable welding stage.

![Al–Fe phase diagram under atmospheric pressure.](image)

Fig. 17. Al–Fe phase diagram under atmospheric pressure [44].
negligible compared with that of tool rotating speed. As a result, welding speed could hardly affect diffusion and IMC reaction process and consequently the composition of the IMC layer. However, extended high temperature period under lower welding speed was shown in the thermal history results, which allows for longer diffusion time and therefore generation of thicker IMC layers. Smaller tool offset means larger fraction of steel is involved in the stirring process and react with aluminum, which will overall increase the interlayer thickness. It was shown that under the lower rotational speed of 1200 rpm and smaller tool offset of 1.03 mm, FeAl was formed at the interface, which was different from the Fe3Al obtained under all other conditions. This could be explained from following aspects. Smaller tool offset has been shown to increase welding force in both vertical and lateral direction and can therefore elevate the pressure in weld nugget, which contributes to IMC reaction. However, the relatively low temperature results from both small tool offset and low rotational speed retards further diffusion of iron atoms into the initially formed IMC layer with the composition of FeAl. As a result, FeAl can hardly be transformed into Fe3Al under insufficient concentration of iron atoms and leaves as interlayer composition after the weld. Temperature distribution is higher under all other conditions and therefore allows for the formation of Fe3Al.

3.7. Joint strength

The highest ultimate tensile strength (UTS) of FSW joints obtained in this study was 240 MPa, which is about 85% of the base Al alloy. One of the tensile specimens obtained under rotational speed of 1800 rpm, welding speed of 90 mm/min and tool offset of 1.63 mm is shown in Fig. 18, where the upper two photos were taken before tensile test and the lower three were after fracture. Necking and fracture can be clearly seen to occur in the heat affected zone of Al, which is apart from the weld nugget and abutting edge. The loss of strength in this region is likely to be caused by dissolution and over-aging of fine precipitates that form inside Al6061 after T6 aging.

On the other hand, specimens under most other conditions exhibited a different failure mode and a typical one is shown in Fig. 19. Necking is hardly distinguishable in this case. Special attention should be paid to the fracture path, which was along the interface between the outside boundary of the stirred over steel strip and aluminum matrix. It was also be noticed that none of the specimens fractured inside the nugget, which can be considered as metal matrix composite where aluminum is the matrix and the IMC corresponds to the reinforcement. In order to develop further understanding of the observed fracture path, SEM images were taken at different positions along all the observable Al–Fe interfaces and the results are shown in Fig. 20.

Position 1 shows the Al–Fe interface in the advancing side, which has been analyzed in previous sessions. Notice that under all of the investigated process conditions, the maximum thickness of the IMC layer in this area was less than 1 μm and none of the specimen
broke at this location. On the other hand, it can be observed that no IMC layer formed at positions 2, 3, 4 on the outside boundary of the stirred over steel strip, which are the actual locations where most of the fractures occurred. In this region, steel and aluminum are indicated to be merely adhered to each other. Another SEM image taken at position 5 inside of the stirred over steel strip shows again the presence of IMC layer and there was no failure at this position as well. Formation of a thin layer of IMC is therefore shown to be beneficial for joint strength. Besides, in this study the composition of the IMC layer was identified to be either FeAl or Fe2Al5, which are iron rich IMCs and less brittle than aluminum rich ones, including Fe2Al5, Fe2Al5 and FeAl3 [42]. Besides, iron rich IMCs possess a good corrosion resistance [46,47], which is highly desirable for Al–Fe joints. It can be anticipated that with such a continuous thin intermetallic layer connecting aluminum and steel together, the related corrosion problem can be promisingly attenuated.

4. Conclusions

Friction Stir Welding (FSW) technique was successfully applied to joining of Al6061 alloy to TRIP 780/800 steel and the maximum tensile strength obtained is about 85% of the base Al alloy. Microstructure analysis was related to different sets of process parameters based on measurements of mechanical welding force and temperature distribution. Main findings of this study are summarized as follows:

- In the advancing side, stirred over aluminum was pushed against base steel and a thin IMC layer of less than 1μm was formed at the interface due to diffusion and reaction.
- Welding speed had an insignificant effect on mechanical welding force, temperature distribution and material strain rate and therefore the IMC layer composition. However, higher welding speed can shorten high temperature period and thus reduce the interlayer thickness.
- Higher rotational speed and larger tool offset can elevate the overall temperature distribution in the weld and reduce the required vertical and lateral force for translating the tool along joint line. Accordingly, they can also influence the composition of the formed IMC layer. Under a low rotational speed and small tool offset, FeAl was formed instead of Fe2Al5, which was formed under all other conditions.
- Sheared-off steel fragments encompassed by a thin layer of IMC or simply IMC particles are unevenly distributed in the weld nugget, which can be considered as metal matrix composite with aluminum as the matrix and IMC as the reinforcement.
- A thin IMC layer with the thickness of less than 1μm and the composition of FeAl or Fe2Al5 can contribute to joint strength. The Al–Fe adhering interface on the outside boundary of the stirred over steel strip was shown to be the most vulnerable location of the weld.

Future works will further consider the integrity of the weldment through detailed fractographic studies and the cross section will be etched to reveal the grain structures for both steel and aluminum with different etching reagents. A finite element model will be developed for predicting the welding force and temperature distribution, which will serve for optimization of the process parameters.

Acknowledgement

This work is supported by the CERC-CVC U.S.–China Program of Clean Vehicle under Award Number DE-P0000012.

References

[30] Barnes S, Bhatti A, Steuwer A, Johnson R, Altenkirch J, Withers P. Friction stir welding Al and C15/C15 with different etching reagents. A finite element model will be developed for predicting the welding force and temperature distribution, which will serve for optimization of the process parameters.

