The Role of Involvement in Attention and Comprehension Processes

RICHARD L. CELSI
JERRY C. OLSON*

We present the results of a study designed to test several hypotheses concerning the effects of intrinsic and situational sources of personal relevance on felt involvement and on the amount of attention and comprehension effort, the focus of attention and comprehension processes, and the extent of cognitive elaboration during comprehension. Felt involvement is a motivational state that affects the extent and focus of consumers' attention and comprehension processes, and thus the specific meanings that are produced. The results of the study provide strong evidence that felt involvement plays a motivational role in consumers' attention and comprehension processes.

Most researchers interested in consumer information processing have emphasized the integration processes by which consumers combine information about product attributes and consequences to form product evaluations and to make brand choices (e.g., Bettman, Capon, and Lutz 1975; Cohen, Miniard, and Dickson 1980). Relatively few researchers have examined the more fundamental processes of attention and comprehension by which consumers attend to salient aspects of their environments and comprehend or make sense of that information (Olson 1978). Although seldom studied, researchers have recognized that consumers' attention and comprehension processes are strongly influenced by their motivations, abilities, and opportunities to process salient information in their environments (e.g., Batra and Ray 1986).

Ability to process is largely a function of the amount and type of knowledge that a person has acquired through experience. To the extent that relevant knowledge can be retrieved from memory in a given situation, consumers have the ability to process the information in their environments. Opportunity to process is largely determined by aspects of the immediate environment. For instance, situational distractions such as noise or crowding are likely to reduce a consumer's opportunity to process information in a shopping environment. Other factors, such as the amount of information (information overload), the format of the information (organized by brand or by attribute), and the modality (print versus broadcast), also can affect a consumer's opportunity to process.

Motivation to process information has been conceptualized by most researchers in terms of consumer's involvement with the informational stimuli (cf. Bloch and Richins 1983; Burnkrant and Sawyer 1983; Cohen 1983; Greenwald and Leavitt 1984; Houston and Rothschild 1978; Lastovika and Gardner 1979; Mitchell 1981; Petty and Cacioppo 1981; Wright 1974; Zaichkowsky 1985). Despite general agreement on the importance of involvement, however, the motivational role of involvement in attention and comprehension processes is not well understood.

Our objective in this article is to explicate the role of involvement in consumer's attention and comprehension processes. We begin by presenting a model that identifies individual difference and situational factors that jointly determine the level of involvement experienced by consumers. Then, we describe how varying levels of involvement should affect consumer's attention and comprehension processes. Next, we present the results of a study that (1) ex-
The concept of felt involvement refers to a consumer's overall subjective feeling of personal relevance. We use the term felt involvement to emphasize the consumer's perception or feeling of personal relevance. This perspective explicitly recognizes that a consumer's level of involvement with an object, situation, or action is determined by the degree to which s/he perceives that concept to be personally relevant. To date, the concept of personal relevance has not been clearly conceptualized. We suggest that a concept is personally relevant to the extent that consumers perceive it to be self-related or in some way instrumental in achieving their personal goals and values. More specifically, the personal relevance of a product is represented by the perceived linkage between an individual's needs, goals, and values (self-knowledge) and their product knowledge (attributes and benefits). To the extent that product characteristics are associated with personal goals and values, the consumer will experience strong feelings of personal relevance or involvement with the product.

When personally relevant knowledge is activated in memory, a motivational state is created that "energizes" or "drives" consumers' overt behaviors, such as search and shopping, and cognitive behaviors, such as attention and comprehension processes. In addition, the type and intensity of personal relevance that is perceived in a situation also directs the focus of cognitive processing and thereby affects the interpreted meanings that are produced by attention and comprehension processes. In sum, motivation to process information is a function of the personally relevant knowledge that is activated in memory in a particular situation. Our approach, like that taken by Richins and Bloch (1986), emphasizes a person's subjective experience or feeling of personal relevance. We refer to this motivational state as felt involvement.

FELT INVOLVEMENT

Like most consumer researchers, we view perceived personal relevance as the essential characteristic of involvement (e.g., Petty and Cacioppo 1981; Richins and Bloch 1986; Zaichkowsky 1985). That is, a consumer's level of involvement with an object, situation, or action is determined by the degree to which s/he perceives that concept to be personally relevant. To date, the concept of personal relevance has not been clearly conceptualized. We suggest that a concept is personally relevant to the extent that consumers perceive it to be self-related or in some way instrumental in achieving their personal goals and values. More specifically, the personal relevance of a product is represented by the perceived linkage between an individual's needs, goals, and values (self-knowledge) and their product knowledge (attributes and benefits). To the extent that product characteristics are associated with personal goals and values, the consumer will experience strong feelings of personal relevance or involvement with the product.

When personally relevant knowledge is activated in memory, a motivational state is created that "energizes" or "drives" consumers' overt behaviors, such as search and shopping, and cognitive behaviors, such as attention and comprehension processes. In addition, the type and intensity of personal relevance that is perceived in a situation also directs the focus of cognitive processing and thereby affects the interpreted meanings that are produced by attention and comprehension processes. In sum, motivation to process information is a function of the personally relevant knowledge that is activated in memory in a particular situation. Our approach, like that taken by Richins and Bloch (1986), emphasizes a person's subjective experience or feeling of personal relevance. We refer to this motivational state as felt involvement.

INVOLVEMENT AS PERSONAL RELEVANCE

Situational Sources of Personal Relevance. A wide variety of specific stimuli, cues, and contingencies in a consumer's immediate environment may function as situational sources of personal relevance (SSPR). Such factors are sources of personal relevance or felt involvement if (1) these situational fac-
tors activate self-relevant consequences, goals, and values and (2) the representations of these stimuli are perceived to be closely associated with those important consequences, goals, and values. For example, marketing strategies may be SSPR for consumers. Sales promotions such as rebates, coupons, and price reductions create contingencies in consumers' decision environments that might activate important personally relevant goals and values such as "save money," "be thrifty," and "be a shrewd consumer." This should increase consumers' felt involvement with a product purchase in that situation.

Because most situational factors are dynamic and changeable, the felt involvement created by SSPR tends to be transitory. For instance, the felt involvement created by SSPR declines when the self-relevant goal or value in that situation is achieved (e.g., a consumer buys a product on sale, thereby saving money). Felt involvement may change when the situation changes. For example, a consumer could forget about the sale while driving to the store or could be distracted by a different sales promotion encountered in the store. These "new" SSPR might activate a different set of goals and values and thereby create a different level of felt involvement.

Intrinsic Sources of Personal Relevance. In contrast, intrinsic sources of personal relevance (ISPR) are relatively stable, enduring structures of personally relevant knowledge, derived from past experience and stored in long-term memory. This knowledge represents perceived associations between objects and/or actions and important self-relevant consequences, such as the attainment of goals and/or maintenance of values. For example, car buffs, wine connoisseurs, and skiing fanatics generally tend to perceive the shopping and consumption activities associated with these products as personally relevant. Thus, they are likely to experience relatively high levels of felt involvement with these products across many situations. With ISPR, "the emphasis is on the product itself and the inherent satisfaction its usage provides, rather than on some (situational) goal such as purchase optimization" (Bloch and Richins 1983, p. 72).

Past Research on SSPR and ISPR. Even though (felt) involvement is always a function of situational and intrinsic factors, most involvement researchers have examined only the effects of SSPR, essentially ignoring ISPR (e.g., Petty, Cacioppo, and Schumann 1983). One reason for the emphasis on SSPR is the relative ease of manipulating situational factors in laboratory experiments, compared to within-individual characteristics. ISPR are memory representations that link product characteristics to self-relevant goals and values. Such knowledge tends to be acquired gradually over time as consumers accumulate product experience across various situations. Therefore, ISPR are not easily created via laboratory manipulations.

In lieu of direct manipulations, some researchers have tried to measure consumers' ISPR for products (e.g., Houston and Rothschild 1978; Lastovika and Gardner 1979). Zaichkowsky (1985), for instance, developed a 20-item scale to measure consumers' "enduring involvement" with products. Richins and Bloch (1986) measured individuals' "enduring (and situational) involvement" with automobiles, and concluded that future research should consider both variables. To date, however, researchers have not specifically examined how ISPR and SSPR combine to affect subjects' felt involvement.

In addition, no researcher to our knowledge has empirically tested the potential effects of (felt) involvement on consumers' attention and comprehension processes, although many researchers have hypothesized about these propositions (e.g., Burnkrant and Sawyer 1983; Cohen 1983; Greenwald and Leavitt 1984; Houston and Rothschild 1978; Mitchell 1981). Moreover, even when empirical research has been conducted and the effects of involvement on attention and comprehension have been theoretically discussed, as was the case with Petty et al. (1983), indices of attention were not obtained nor were process measures reported. Petty et al. limited their reported findings to the effects of involvement on persuasion. The types of cognitive processes that they proposed as mediators of persuasion (i.e., central and peripheral routes to persuasion) were not directly examined.1

RESEARCH ISSUES

The major objectives of this research are to examine (1) how different levels of SSPR and ISPR create motivational states of felt involvement and (2) how that felt involvement affects various aspects of consumers' attention and comprehension processing of product information presented in several print ads.

Effects of Felt Involvement on Attention and Comprehension Processes: Motivation to Process

A number of researchers have discussed the potential effects of (felt) involvement on consumers' attention and comprehension processes (e.g., Burnkrant and Sawyer 1983; Cohen 1983; Mitchell 1979). Greenwald and Leavitt (1984) have presented the most thorough treatment to date. They considered attention and comprehension processes as varying along a continuum from the automatic, lower effort

1Petty et al. (1983) did take process measures (cognitive response), but did not report them, presumably because of their lack of significance.
processes of preconscious attention to the more controlled, higher effort comprehension processes involved in elaboration.

In this perspective, consumers who experience greater felt involvement in an information processing situation should have greater motivation to attend to and comprehend the salient information in that situation (Petty et al. 1983 make similar predictions). These consumers should allocate greater cognitive resources and exert more energy in their attention and comprehension processes than do consumers who experience less felt involvement. Moreover, higher levels of felt involvement should motivate consumers to produce increasingly elaborate meanings about salient environmental stimuli (cf. Petty and Cacioppo 1981; Richins and Bloch 1986). That is, if individuals are motivated to comprehend certain environmental stimuli, they are likely to elaborate the information and form inferences about it. Of course, these inferential elaborations also will be affected by consumers’ domain knowledge (i.e., ability to process), which we discuss next (cf. Anderson and Reder 1979; Brucks 1985; Sujan 1985). In sum, greater levels of felt involvement should affect the amount of effort, the focus of attention and comprehension processes, and the number and type of meanings produced by comprehension processes.

Effects of Domain Knowledge on Attention and Comprehension Processes: Ability to Process

The degree of elaboration and the types of meanings produced by individuals in information processing situations are also affected by their domain knowledge, that is, their abilities to process. For example, Brucks (1985) demonstrated that individuals’ prior product-class knowledge affected their information search behavior. Sujan (1985), in a study that contrasted “experts” and “novices,” showed that subjects’ prior knowledge or “expertise” affected their evaluation processes. Clearly, both felt involvement (motivation to process) and domain knowledge (ability to process) affect behavior and cognition.

However, separating the effects of felt involvement and domain knowledge remains problematic because they are related. Both ISPR (as a source of felt involvement) and consumers’ domain knowledge or “expertise” concern knowledge stored in long-term memory. ISPR is knowledge that links salient product characteristics to self-related goals and values. Domain knowledge is the general semantic and episodic knowledge regarding the product. Both develop concurrently in long-term memory as consumers’ experiences with the product accumulate. Thus, we would expect that consumers’ domain knowledge is positively related to their ISPR for that product. Because most past research has examined (felt) involvement as a function of SSPR, not ISPR, few researchers have considered consumers’ relevant domain knowledge. Therefore, we know little about the relative influence of ISPR and domain knowledge on attention and comprehension processes.

The research on consumer knowledge has also neglected this relationship. One exception is a study by Sujan (1985). As would be expected, Sujan found that involvement (ISPR) was positively related to domain knowledge (r = 0.51 in her study). However, she found that knowledge exerted an effect on the subjects’ “evaluation processes independent of involvement or interest” (1985, p. 44). She inferred that although involvement could be reasonably assumed to increase the “amount of processing, and therefore predict that the ‘expert’ group would always process more than the ‘novice’ group, it could not predict the interaction hypothesized between expertise (knowledge) and the extent of the match of information to consumer’s knowledge base” (1985, p. 44). Sujan concluded that knowledge and involvement can independently affect individual’s information processing operations.

Based on our theory of felt involvement and Sujan’s results, we propose that consumers’ ISPR (as it affects felt involvement) and their domain knowledge, although related, exert independent and separable effects on consumers’ attention and comprehension processes. ISPR, through felt involvement, affects a consumer’s motivation to attend to and comprehend information, and domain knowledge affects a consumer’s ability to process. Consider that domain knowledge is not likely to be activated from memory unless subjects are sufficiently motivated (have enough felt involvement) to focus on and interpret particular information in the situation. If so, relevant domain knowledge must be activated from long-term memory to comprehend the information. Only then will the knowledge differences (variations in ability to process) between experts and novices be evidenced.

In sum, ISPR (through its effects on felt involvement) and domain knowledge are expected to exert independent effects on consumers’ attention and comprehension processes. By influencing the motivational state of felt involvement, ISPR should affect the amount of attention and comprehension effort as well as the focus of attention and comprehension processes. Domain knowledge should affect comprehension processes and the specific meanings produced during elaboration.

HYPOTHESES

Based on the previous theoretical discussion, we developed five hypotheses concerning the effects of felt involvement and domain knowledge on the amount and effort exerted in attention and compre-
hension processes, the focus of attention and comprehension processes, and the elaboration processes during comprehension.

Amount of Attention and Comprehension Effort

The motivation associated with felt involvement should affect the amount of cognitive effort that consumers devote to attention and comprehension processes.

H1: As their felt involvement with product information increases, consumers spend more time attending to the information.

H2: As their felt involvement with product information increases, consumers produce a greater number of thoughts in response to the information.

Focus of Attention and Comprehension Processes

As consumers' felt involvement and motivation to process increases, their attention should increasingly focus on the relevant information in that situation.

H3: As their felt involvement with product information increases, consumers produce a greater proportion of product-related thoughts relative to their total number of thoughts.

Elaboration (Inferences) During Comprehension

Comprehension processes vary in elaboration, and the number of inferential thoughts can be used to indicate the amount of elaboration that occurs during comprehension. Inferences are produced when prior knowledge activated from memory is integrated with new information from the environment to produce new meanings (inferential elaborations) not present in the environment. Higher levels of felt involvement should motivate consumers to produce more elaborate inferences about information in the environment.

H4: As their felt involvement with product information increases, consumers produce a greater proportion of product-related inferences relative to the total number of thoughts.

Domain Knowledge

We also recognize that domain knowledge affects comprehension processes. Specifically, if consumers experience sufficient felt involvement to be motivated at all to engage in comprehension processes, then their domain knowledge primarily should affect the comprehension processes by which they interpret relevant stimulus information. We expect relatively little effect of domain knowledge on attention processes or amount of effort exerted in attention and comprehension processes.

H5: Domain-specific knowledge has a greater impact on comprehension than on attention processes. In particular, domain knowledge affects the focus of comprehension (proportion of product-related thoughts) and the outcomes of elaboration processes (proportion of product-related inferences).

METHODOLOGY

Involvement Domain

Tennis was selected as the domain of involvement because of its widely varying relevance to a college population and the ready availability of people with very high levels of ISPR for playing tennis. Playing tennis requires particular behaviors as well as special products, such as tennis racquets, strings, shoes, balls, and clothing.

Research Overview

Testing the research hypotheses required measures of ISPR and domain knowledge as well as an experimental setting in which we could manipulate SSPR. This allowed us to determine the combined effects of ISPR and SSPR (and domain knowledge) on consumers' attention and comprehension processes and outcomes.

We conducted two research sessions. In the first session, we administered a screening questionnaire to 400 college students and adults. The questionnaire measured subjects' ISPR for playing tennis, their knowledge about tennis rules and procedures, and their past experience with tennis.

A subgroup from the first session of 136 subjects, who represented a broad range of ISPR levels, was selected to participate in the second session conducted about three weeks later. First, these subjects received one of two manipulations of SSPR concerning information about tennis products. Then, we showed these subjects product information contained in six print ads for three tennis products (two ads for each product)—racquets, strings, shoes, and clothing. During and immediately following each pair of ads for each product...
class, we measured subjects' attention to and comprehension of the advertised information.

Characteristics of the Experimental Subjects

The 136 subjects selected for the experiment included 91 undergraduate students, 10 graduate students, 20 adult residents of the local community, and 15 past and present members of the men's and women's university-level tennis teams. Subjects' ages ranged from 17 to 79, with a mean age of 23 years. Women comprised 51 percent of the subjects. Seventeen percent of the subjects reported that they had received formal training in tennis, and 8 percent reported being ranked sometime in their lives by the United States Tennis Association of The World Tennis Association (the highest reported ranking was 180th in the world). Approximately 28 percent of the subjects reported having at least one tennis lesson or tennis class and 59 percent reported owning one or more tennis racquets.

Measuring Intrinsic Sources of Personal Relevance (ISPR)

We used Zaichkowsky's (1985) Personal Involvement Inventory (PII) to measure consumers' ISPR for playing tennis. The PII scale contains 20 seven-point items, each labeled with bipolar adjectives, such as important/unimportant, essential/nonessential, and relevant/irrelevant. Subjects' responses to these items were summed, producing a minimum score of 20 (Very Low ISPR) and maximum score of 140 (High ISPR). We selected 136 subjects based on their PII scores to participate in the experimental part of the study (i.e., the second session). These subjects were divided into four groups of 34 people representing four nonoverlapping levels of ISPR for playing tennis, as reflected by their PII scores: Very Low (20–60), Low (63–86), Moderate (95–112), and High (120–140).3

Experimental Design

The 34 subjects in each of the four ISPR conditions (Very Low, Low, Moderate, and High) were assigned randomly to two levels of SSPR, labeled Baseline and Higher. This produced eight treatment conditions corresponding to a 2 X 4 (SSPR by ISPR) between-groups factorial design. Subjects in each cell were exposed to six actual print ads arranged in pairs: two brands of tennis racquets, two brands of tennis shoes, and two brands of tennis racquet strings. Following exposure to each pair of ads, subjects wrote down their cognitive responses and completed several rating scales concerning those two ads.4

We included two ads per product for two reasons. First, we had to show ads for two brands to be consistent with the experimental manipulation of the High SSPR group, which was a choice of brands in a lottery (see "Manipulation of SSPR" in the next section). Second, two ads provide subjects with more product information, which allows a greater variance in their responses, thereby providing a more sensitive test of our research hypotheses. Since the two brand ads for each product had no theoretical meaning in the context of this study, we aggregated each dependent measure across the two ads for each product.

Similarly, the three product categories—racquets, shoes, and strings—were of no particular theoretical interest in this research. We included three product categories to test whether our hypotheses would be supported across multiple product categories. Although we expected that subjects would respond differently to the three products, the main effects of product class were not of theoretical interest. From an ANOVA perspective, however, our 2 X 4 design could be considered to have an additional, within-subjects factor—product—with three levels. To verify that the product factor did not have any biasing interactions with ISPR and SSPR, we tested all hypotheses using a series of ANOVAs with the product factor included as a third factor. We determined that product did not interact with ISPR or SSPR for any dependent measures, although it did have some (unimportant) main effects on several dependent variables. Therefore, we collapsed the product factor in all subsequent analyses. Thus, each dependent measure is based on the combined responses to the six ads.5

3We intentionally avoided overlap between levels by using the following procedure to select the 34 subjects in each of the four ISPR conditions (Very Low, Low, Moderate, High). For the Very Low ISPR group, subjects with the lowest scores were selected first, that is, selection proceeded from the lowest score to higher scores. For the High ISPR group, subjects with the highest scores were selected first, that is, selection proceeded from the highest score to lower scores. We selected subjects in the Low and Moderate groups differently than we did for the Very Low and High groups. The mean PII score for all subjects was 95. Using 95 to dichotomize the remaining subjects, we determined the mean score within the "upper" and "lower" groups. Then, we alternatively selected subjects with the closest scores around the mean until 34 subjects were in each group.

4To partially control for subjects' familiarity with the advertised products, we selected actual ads for new brands or brands with new attributes. For example, one tennis racquet ad was for a new Wilson Ceramic midsized racquet, and the second ad was for a midsized Pro-Kennex with a new dense stringing pattern. Both ceramic racquets and the dense stringing pattern were product innovations at the time of the experiment. We measured familiarity with each ad using the following seven-point scale: "How familiar are you with this ad?" We found that neither ISPR or SSPR had any effects on self-rated familiarity (alpha = 0.05). Moreover, subsequent analyses (ANCOVAs) revealed that ad familiarity was not significantly related to any dependent measure (alpha = 0.05).

5Each product class produced the same pattern of results when tested independently.
In sum, the experimental design (as analyzed) tested the effects of ISPR (for playing tennis) and SSPR (for information about three tennis products presented in six ads) on subjects' felt involvement (with processing this information) and on their subsequent attention to and comprehension of the advertising information about those products.

Experimental Procedures

Subjects were tested in groups of eight or less, and all subjects in a group received the same SSPR manipulation. On a table in front of each subject was a closed loose-leaf folder referred to as the ad booklet. The ad booklet contained the instructions and the print ads as well as a separate section containing the dependent measures. Event recorders were used to measure the amount of time subjects spent reading each ad (explained later).

The study was introduced verbally by the experimenter. To ensure attention to the instructions, subjects were told to read along as the researcher read the following introductory instructions (underlining in the original):

In this booklet are several ads for tennis products. All we would like you to do is to look at each ad as if you were seeing it in a magazine at home. We know this present situation is quite different from home, but we would like you to try to keep this instruction in mind. Just look at these ads as if you were looking at them in a magazine at home. You will see six advertisements for tennis products.

The subjects were instructed that they could examine each ad for as long or as little time as they wanted, and then to follow the instructions contained in the ad booklet.

Manipulation of SSPR. The subjects in the Baseline SSPR condition were told nothing else beyond the introductory instructions. However, subjects in the Higher SSPR group were told that they would be participating in a lottery in which they could win their choice of one of the advertised products. They received the following written instruction (underlining in the original):

We have an extra bonus for helping out with this study. Your name will be placed in a lottery. Here's how you can win. Three winners will be selected at random. If your name is the first one selected, you will win your choice of the two tennis racquets for your prize. If your name is the second name selected, you will win your choice of the two pairs of tennis shoes for your prize. If your name is the third name selected, you will win your choice of the two sets of tennis strings for your prize. So that we know which prizes to get, we want you to make your choices today. In the Answer Booklet is a place to write down each of your selections.

We interpret the Higher SSPR manipulation as follows. The chance to win a lottery is a temporary situation that should activate some desirable, self-relevant goals and values. These goals and values are likely to be linked to the product-related information in the ads. These SSPR should increase subjects' felt involvement, which should affect how they attend to and comprehend the advertised information.

As mentioned, half of the 34 subjects in each of the four ISPR groups were not included in the lottery. These subjects were instructed to look at the ads as they would at home, thus creating a lower or baseline level of SSPR. Of course, every survey and lab experiment contains cues and contingencies that may function as SSPR and activate self-relevant goals, such as "look good," or "be clever," or "don't appear foolish." These goals create a certain level of felt involvement or motivation on the part of subjects. However, we assume that the SSPR created by being in the experiment are about the same in the Baseline and the Higher SSPR conditions. Thus, we interpret differences between the Baseline and Higher SSPR groups as reflecting only the lottery manipulation of SSPR (see Richins and Bloch 1986 for a similar interpretation). In sum, the Baseline SSPR condition literally provides a baseline against which the effects of the Higher SSPR manipulation can be interpreted.

Ad Exposure and Cognitive Response Measurement. Next, subjects read the six product ads at their own pace. The two tennis racquet ads always preceded the two shoe ads, which always preceded the tennis racquet string ads, but the order of the two brand ads was randomly varied within each product. After subjects had examined the two ads for tennis racquets, the instructions in the ad booklet directed them to turn to the first page of the answer booklet. There they were instructed to write everything that they could remember thinking and feeling while looking at the ads.

After subjects wrote their retrospective cognitive responses about the two tennis racquet ads, they completed nine rating scales regarding their attitudes toward the two ads and the two advertised brands. Then, they were instructed to return to the ad booklet and examine the next two ads for tennis shoes, followed by the two ads for tennis racquet strings. The same measurement procedure was repeated for shoes and strings.

Measures

Measures of Amount of Attention (Hypothesis 1) and Comprehension Effort (Hypothesis 2). We considered the time subjects spent processing each ad as a measure of amount of attention effort. Processing time was determined from the event recorder tapes. Each recorder contained a roll of pressure sensitive
paper on which a mark was made whenever a subject pressed the button. Because the speed of the paper was constant and closely calibrated, the distance between marks could be converted into the times between events (button presses). Instructions printed on the back of each page in the ad booklet told subjects to press the event recorder button. Subjects saw this instruction each time they turned a page in the ad booklet (11 times during the experiment). Thus, the distance between marks reflects the time a subject spent attending to each ad.

After viewing the pair of ads in each product category, subjects were told to write the thoughts they had while processing each ad. We considered the total number of thoughts in each subject’s cognitive response protocol as a measure of the amount of comprehension effort they exerted during ad processing. Two judges (one was the first author), who were blind to the experimental conditions of the subjects, independently categorized subjects’ cognitive responses into separate thoughts (interjudge agreement = 95 percent). Subjects produced a total of 4,624 independent thoughts across the six ads, or an average of 34 thoughts per subject. This worked out to a mean of 5.6 thoughts per ad, a number consistent with the thoughts per ad obtained in other cognitive response studies of print advertising (e.g., Olson, Toy, and Dover 1982).

Focus of Attention/Comprehension (Hypothesis 3). The individual thoughts in the cognitive response protocols were coded to yield a measure of the focus of subjects’ attention and comprehension processes. The two judges coded each thought as either product-related or ad-related (interjudge agreement = 96 percent). The proportion of product-related thoughts reflected the degree to which subjects’ attention was focused on the product information in the advertising message.

Elaboration (Hypothesis 4). Next, the two judges coded each product-related thought as either inferential or noninferential (interjudge agreement = 96 percent). Noninferential thoughts include sensory-level descriptions of product characteristics or verbatim playbacks of the product/brand information explicitly presented in the ads. In contrast, inferential thoughts reflect deeper, more semantic comprehension of the ad information, such as overt evaluations, conclusions, questions, and comparisons. Inferences involve going beyond the information given. To do so, subjects must integrate information from the ads with their memory-based knowledge (Olson 1980). Clearly, inferential thoughts require more elaborative comprehension processes than do noninferential thoughts. In sum, we considered the proportion of total thoughts that were product-related inferences as a measure of the amount of elaboration (of product information) during comprehension processes.

Tennis Domain Knowledge (Hypothesis 5). We created a single measure of subjects’ tennis knowledge by standardizing and summing three indicators of tennis knowledge—tennis expertise, product use experience, and product class familiarity. Correlations between each of these measures ranged between 0.71 and 0.76 (coefficient alpha = 0.83). A paper-and-pencil test of tennis expertise was included in the screening questionnaire. This measure contained 15 multiple choice, true/false, and fill-in-the-blank questions concerning tennis scoring knowledge, and tennis procedural and product use knowledge (coefficient alpha = 0.86). The following questions are representative of these categories.

1. Which score is indicative that the next serve be made into the receiver’s right court position? (a) 30–15, (b) love–40, (c) 40–15, (d) love–15.
2. A drop shot can be very effective in all of the following situations except: (a) when your opponent is slow, (b) when the wind is at your back, (c) when your opponent is playing deep, (d) when you want to surprise your opponent.
3. The follow-through of a top spin forehand drive should (a) end with the racquet head about waist high, (b) end with considerable wrist action, (c) end with your weight evenly distributed on both feet, (d) end with the racquet head facing forward and above the shoulders.

Single item scales were used to assess playing experience and familiarity with tennis products. To measure playing (or product use) experience, subjects were asked to report on an 11-point scale how often they played tennis (bipolar labels = not at all and five to seven times per week). As a measure of familiarity with tennis products, subjects were asked to rate their familiarity with tennis racquets on a seven-point scale (bipolar labels = highly familiar and not at all familiar).

Felt Involvement

Our model of involvement identifies SSPR and ISPR as two key influences on the motivational state

Some researchers have reported that measures of “expertise,” subjective familiarity, and product use experience may not produce the same pattern of effects on information processing measures (see Brucks 1985 for a discussion of objective versus subjective knowledge and Zaichkowsky 1987 for an exploratory comparison of involvement, familiarity, and product use experience). If so, these three measures should not be aggregated. However, in the present research, we analyzed each measure singly as a covariate and obtained the same pattern of results for each. Therefore, to simplify the presentation, we standardized and aggregated the three measures.
that consumers subjectively experience as felt involvement. To measure subjects' overall level of felt involvement toward the product information in the ads, we constructed a two-item scale (based on Wells 1986).

The message in the ad was important to me.

<table>
<thead>
<tr>
<th>strongly disagree</th>
<th>strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>strongly disagree</td>
<td>strongly agree</td>
</tr>
</tbody>
</table>

The ad didn't have anything to do with me or my needs.

<table>
<thead>
<tr>
<th>strongly disagree</th>
<th>strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>strongly disagree</td>
<td>strongly agree</td>
</tr>
</tbody>
</table>

Immediately after writing their cognitive responses, subjects rated each ad on both items. The average inter-item correlation was 0.85. We computed the average rating on these two items across all six brands as a measure of overall felt involvement with the product information in the ads.

RESULTS

Overview of Data Analyses

The results are organized as follows. First, we report our manipulation check of the influence of SSPR and ISPR on felt involvement. We tested the manipulation check with a 2 × 4 ANOVA model. Second, we examine the first four hypotheses, which concern the motivational effects of felt involvement on consumers' attention and comprehension processes. We used simple SSPR-by-ISPR ANOVA models for these analyses. We also examine whether consumers' domain knowledge affected their attention and comprehension processes, beyond the influence of felt involvement. To explore this issue, we included the domain knowledge index as a covariate in SSPR-by-ISPR ANCOVAs (Hypothesis 5).

We analyzed all hypotheses using both total and partial sums of squares (i.e., shared and unique variance), because we found (as expected) that consumers' domain knowledge scores were significantly correlated with measures of their ISPR (r = 0.61). This relationship between domain knowledge and ISPR means that part of the total variance in the ANCOVA model is common to both variables. In such cases, conducting significance tests using total sums of squares (representing all the variance) means that the order in which the nonorthogonal variables enter the statistical model will affect the results, because all common variance is attributed to the variable that enters the model first. Thus, the total sums-of-squares procedure could produce a significant effect for a particular factor when common variance is included and a nonsignificant effect when it is not included (see Mitchell and Olson 1981 for another discussion of this problem). A more conservative procedure is to test the significance of each nonorthogonal factor using only the partial sums of squares unique to that factor (see Timm and Carlson 1975). This procedure eliminates the effects of shared variance. Therefore, we conducted ANCOVAs with domain knowledge as a covariate using two analytical procedures—total (shared variance) and partial sums of squares (unique variance). By comparing the results of both analyses, we can gain a deeper understanding of the pattern of relationships between ISPR and domain knowledge.

Manipulation Check: The Effects of SSPR and ISPR on Felt Involvement

The logic of this research requires successful “manipulation” of various levels of felt involvement by varying situational and intrinsic sources of personal relevance. Thus, both SSPR and ISPR should significantly affect the two-item measure of felt involvement. As predicted, SSPR had a significant effect on felt involvement (F = 6.0; df = 1, 127; p < 0.01), producing mean felt involvement scores of 3.1 and 3.7 for the Baseline and Higher SSPR conditions, respectively. This indicates that the situational manipulation of personal relevance (the lottery) enhanced subjects' felt involvement with the product information in the ads over a baseline level of SSPR.

Subjects' ISPR also had a significant main effect on subjects' overall level of felt involvement (F = 49.3; df = 1, 127; p < 0.01; marginal means: Very Low = 2.4, Low = 3.1, Moderate = 3.5, High = 4.8). The magnitude of the ISPR effect on felt involvement was substantially larger than that of the SSPR (ω² = 0.41 versus 0.02, respectively). SSPR and ISPR did not interact (F = 0.22; p < 0.8). All differences between pairs of the ISPR marginal means were significant except for the Low versus Moderate conditions. Because the Low and Moderate ISPR groups did not produce significant differences in subjects' felt involvement, we combined them. Therefore, in all subsequent analyses, the blocking factor, ISPR, had three significantly different levels—Low, Moderate, and High—with 34, 68, and 34 subjects at each level.

Effects of Felt Involvement and Domain Knowledge on Attention and Comprehension Effort

In this section, we examine the motivational effects of felt involvement, as created by SSPR and ISPR, on subjects' attention and comprehension processes. First, we examine how felt involvement, as determined by the treatment combinations of SSPR and ISPR, affected the amount of attention (Hypothesis 1) and comprehension effort (Hypothesis 2) that con-

7Throughout the analyses, we used the Least Significant Difference method with alpha = 0.05 to test differences between marginal means (cf. Winer 1962).
THE ROLE OF INVOLVEMENT

TABLE
F-STATISTICS FOR FOUR MEASURES OF ATTENTION
AND COMPREHENSION PROCESSES

<table>
<thead>
<tr>
<th>Stage of process</th>
<th>Source (df)</th>
<th>Total variance</th>
<th>Unique variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of attention</td>
<td>Time spent processing ads</td>
<td>SSPR (1, 127) 25.5*</td>
<td>20.1*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISPR (2, 127) 12.6*</td>
<td>7.2*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSPR ISPR (2, 127) 0.9</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge (1, 127) 0.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Comprehension effort</td>
<td>Total thoughts</td>
<td>SSPR (1, 127) 6.5*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISPR (2, 127) 6.6*</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSPR ISPR (2, 127) 1.6</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge (1, 127) 1.6</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Focus of attention</td>
<td>Proportion of product-related thoughts to total thoughts</td>
<td>SSPR (1, 127) 6.6*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISPR (2, 127) 7.2*</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSPR ISPR (2, 127) 0.8</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge (1, 127) 9.2*</td>
<td>9.2*</td>
</tr>
<tr>
<td></td>
<td>Elaboration</td>
<td>Proportion of product-related inferences to total thoughts</td>
<td>SSPR (1, 127) 5.1*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISPR (2, 127) 12.0*</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSPR ISPR (2, 127) 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge (1, 127) 12.5*</td>
<td>12.5*</td>
</tr>
</tbody>
</table>

* Significant at 0.01.
* Significant at 0.05.
* Significant at 0.10.

Comprehension Effort. In our second hypothesis, we stated that as the level of their felt involvement increases, subjects exert more effort during comprehension processing (measured here by the total number of thoughts subjects reported having across all six ads). The results presented in the Table show that this hypothesis was supported. Total thoughts were significantly affected by SSPR and ISPR ($\omega^2 = 0.04$ and 0.08) for the analysis using total sums of squares. All pairwise differences between ISPR marginal means were significant except Low versus Moderate. Again, SSPR and ISPR did not interact (section 2 of the Figure). The pattern of effects changed somewhat for the analysis using unique variance (see the Table), as only SSPR had a significant effect on comprehension effort. As predicted in Hypothesis 5, consumers' domain knowledge was not significantly related to comprehension effort in either analysis. In sum, the motivational level of felt involvement created by ISPR and SSPR affected the amount of cognitive effort (thinking) that consumers exerted during comprehension processing of the ads.

Focus of Attention and Comprehension. Hypothesis 3 predicted that subjects' information processing would become increasingly focused on the product-related information in the advertisements as felt involvement increased. Focus of attention and comprehension processes were indicated by the proportion of product-related thoughts subjects reported having during ad exposure. The results from the total sums-of-squares analysis supported this hypothesis (see the Table). The proportion of product-related thoughts was significantly affected by the manipulation of SSPR as well as the individual differences in ISPR ($\omega^2 = 0.04$ and 0.08). All differences between pairs of ISPR marginal means were significant except Low versus Moderate. Again, we found no interaction between ISPR and SSPR (section 3 of the Figure).

The ANCOVA revealed that consumers' domain knowledge was related to the proportion of product-related thoughts they produced, as predicted in Hypothesis 5 ($\omega^2 = 0.05$). When only the unique variance was analyzed, SSPR and domain knowledge still affected consumers' focus of comprehension processing, but ISPR did not. This suggests that consumers' domain knowledge has a greater effect on the focus of their comprehension processing than does ISPR.

In sum, these results indicate that as felt involvement increases (due to ISPR and SSPR), subjects increasingly focus their comprehension processes on interpreting the product-related information in the advertisements. Of course, once subjects begin to focus on the product-related information in the ads, do-

8We discuss differences in results obtained via total and partial sums of squares in the discussion section.
FIGURE

CELL MEANS FOR FOUR MEASURES OF ATTENTION AND COMPREHENSION AS A FUNCTION OF SSPR AND ISPR

1. Attention

Time (seconds)

75
65
55
45
35

Low Moderate High ISPR

(45.2) (57) (66.6)
(40.9) (53.4) (68.6)
(37.6)

2. Comprehension effort

Total thoughts

45
40
35
30
25

Low Moderate High ISPR

(29) (31.6) (34.9)
(31.6) (33.2) (43.4)

3. Focus of attention

Proportion of product related thoughts

.80
.70
.60
.50
.40

Low Moderate High ISPR

(.50) (.62) (.74)
(.50) (.62) (.62)
(.52)

4. Elaboration

Proportion of product related inferences

.60
.50
.40
.30
.20

Low Moderate High ISPR

(.28) (.34) (.47)
(.31) (.43) (.59)
main knowledge must be activated from memory to be used in the interpretation/comprehension of this product information.

Amount of Elaboration. In Hypothesis 4, we predicted that comprehension processes would become increasingly elaborative as consumers’ level of felt involvement increased. This elaboration, combined with a greater focus on product information (Hypothesis 3), was expected to produce more inferences about the advertised products. We measured elaboration by computing the proportion of product-related inferences (thoughts that go beyond the information given in the six ads) relative to subjects’ total number of thoughts. We also predicted (Hypothesis 5) that consumers’ domain knowledge would be related to their elaboration processes, since product inferences necessarily must draw on existing domain knowledge in memory.

The results supported Hypothesis 4 and Hypothesis 5 (see the Table). The proportion of product-related inferences increased as a function of the felt involvement created by SSPR and ISPR ($\omega^2 = 0.04$ and 0.13, respectively). All differences between pairs of marginal means for ISPR were significant. Again, ISPR and SSPR did not interact (section 4 of the Figure). As expected, consumers’ domain knowledge was significantly related to the amount of their cognitive elaboration ($\omega^2 = 0.07$). Again, the analysis of unique variance revealed that only the SSPR and domain knowledge effects were significant; ISPR had no effect on product-related inferences. In sum, these results suggest that consumers’ domain knowledge is a stronger influence on their elaboration processes than are their intrinsic levels of personal relevance.

DISCUSSION

The Role of Felt Involvement

The results of this study provide initial evidence of the motivational role of (felt) involvement in consumers’ attention and comprehension processes. Felt involvement was defined in terms of the self-relevant knowledge that is activated and experienced in a given situation. This perceived personal relevance was conceived to be a joint function of ISPR and SSPR. We found that both ISPR and SSPR affected consumers’ felt involvement or motivation to process salient product information in advertisements. In addition, we found that as their felt involvement increased due to ISPR and SSPR, subjects (1) devoted more attention to the advertisements, (2) exerted greater cognitive effort during comprehension of those ads, (3) increasingly focused their attention on the product-related information in the ads, and (4) engaged in more elaboration of the product information during comprehension. This consistent pattern of effects provides strong support for our theoretical notion that ISPR and SSPR create a motivational state of felt involvement that affects attention and comprehension processes. Our results also provide evidence of how consumers’ domain knowledge relates to their ISPR, and how both factors affect felt involvement and attention and comprehension processes.

The Relationship Between Felt Involvement and Consumers’ Domain Knowledge

The relationship between domain knowledge and ISPR (as a source of felt involvement) has rarely been examined. Thus, we know relatively little about the relationships and interactions between felt involvement and domain knowledge (i.e., motivation to process and ability to process) and their combined effects on consumers’ attention and comprehension processes and outcomes.

This study provides some initial evidence about this relationship and their effects. As predicted, we found (using both the common and unique sums of squares) that subjects’ domain knowledge was differentially related to various stages/outputs of consumers’ attention and comprehension processes. Specifically, domain knowledge was related to the focus of comprehension processes and the elaborative inferences produced by these processes. Domain knowledge had its greatest influence on the meanings (product-related inferences) produced by comprehension processing. However, domain knowledge was not significantly related to the amount of effort expended in attention and comprehension processing. Instead, these aspects of information processing were strongly influenced by the motivational state of felt involvement that was created by SSPR and ISPR. Our data are consistent with the predictions of Burnkrant and Sawyer (1983) and Greenwald and Leavitt (1984) who suggested that consumers’ felt involvement affects the amount of effort exerted in attention and comprehension processing as well as the number and types of meanings produced by comprehension processes. In contrast, domain knowledge mainly influences the types of meanings produced by comprehension processes.

The results of this research provide a basis for formulating a more elaborate theoretical explanation of how domain knowledge (ability to process) and felt involvement (motivation to process) jointly affect information processing. Our data suggest that motivated subjects (those with greater felt involvement) devote more attention to relevant information. To interpret and elaborate that information, however, they must be able to activate relevant knowledge about the domain from long-term memory. It is not necessary...
to activate much domain knowledge until one begins attending to self-relevant stimuli/cues that require deeper, more elaborate interpretation. However, when consumers’ felt involvement is low, due perhaps to low ISPR or SSPR, no information is self-relevant and attention levels are likely to be low. Only shallow, minimal levels of comprehension are required in such cases, and little domain knowledge has to be activated from memory.

By this reasoning, domain knowledge tends to influence comprehension processes only when individuals feel sufficiently involved (perceived self-relevance is strong enough) to motivate deeper, more elaborate comprehension of product-related information. Our results also suggest that the motivational state of felt involvement influences attention and comprehension effort regardless of a subject’s ability to process the amount of domain knowledge stored in memory. Felt involvement seems to dominate knowledge by influencing the amount and focus of processing effort, whereas knowledge dominates felt involvement by influencing the types of meanings produced by comprehension processing. In sum, the present results suggest that consumers’ domain knowledge becomes increasingly influential as information processing progresses from relatively automatic processes of attention to more controlled and focused comprehension processes.

Limitations

Like any research, this study has several characteristics that limit the generality of its results. First, our experimental setting was an artificial environment that probably created several unnatural factors that influenced subjects’ levels of felt involvement. For instance, just being in the experiment and being observed by the experimenter probably activated some feelings of personal relevance and increased subjects’ general levels of felt involvement. Subjects’ levels of felt involvement, from various sources, probably affected their overall responses to the ads. However, these “experimental sources of personal relevance” (cf. Houston and Rothschild 1978) should have been about the same for all treatment groups. If so, they probably did not differentially affect the results. In addition, the advertisements were presented within an artificial context void of the editorial and story content of a real magazine. No doubt, this increased subjects’ attention to the ads beyond that expected to occur in a natural exposure environment. Again, this limits the external validity of the effects but not the internal validity of the design or measures.

FUTURE RESEARCH ISSUES

Like most research, this study raises many questions and issues that require additional research. These include measurement and methodological issues as well as theoretical questions.

SSPR

A number of issues concerning the concept of SSPR warrant attention. A key research issue concerns the best way to conceptualize (and measure) SSPR. In the present research, we treated SSPR as a “descriptive concept”—the presence of cues or contingencies in the immediate situation (in our case, a chance to win a lottery). Some researchers might argue that SSPR should be a “perceptual concept” that could be measured by asking consumers whether they perceive aspects of the situation to be personally relevant. But such a measure would be quite similar to our measure of felt involvement. We believe that it is useful to distinguish between the SSPR (the specific cues and contingencies in the environment) and the effects they have on felt involvement (transient increases in perceived personal relevance and motivation).

Recognizing that most situations contain several cues, stimuli, and contingencies that function as multiple sources of personal relevance is important. In this sense, one could describe situations in terms of their overall “motivating potential.” Our concept of SSPR is meant to represent the combination of all these sources. Researchers could examine how multiple SSPR combine to affect felt involvement. In addition, researchers could delve more deeply into the basis for how SSPR affects felt involvement. Why do particular cues, stimuli, and contingencies in the immediate situation tend to activate representations of personal relevance? Such research also has the potential to improve our weak theories of situations.

Combined Effects of ISPR and SSPR on Felt Involvement

In the present research, the relative influence of ISPR and SSPR on felt involvement was noninteractive. It would be interesting to determine whether SSPR and ISPR combine noninteractively to create felt involvement in every circumstance and on every occasion. Bloch and Richins (1983) imply that the two sources of personal relevance might interact in certain cases. Future experimental research could seek to identify the factors that determine which type of combination will occur.

Examining how ISPR and SSPR combine in natural situations would also be of interest. Future research might carefully describe how consumers with differing levels of ISPR react to varying marketing strategies (some of which may be SSPR) in natural consumer situations. In natural settings, of course, selective exposure and attention processes operate. These factors were not present in our experimental
situation. Perhaps ISPR and SSPR combine differently for selective processes.

Perceived Personal Relevance

Another useful direction for future research would be to describe in detail the specific contents of the knowledge structures that are activated when consumers perceive that an object or action is personally relevant. This requires measures of the cognitive representations of self-relevance. Researchers would need to identify the self-knowledge (goals and values) and product knowledge (attributes and benefits) that are activated as well as how strongly the product knowledge is seen to be related to self-knowledge. We suggest using means-end chain theory to model the relationships between product knowledge and self-knowledge and using laddering methods to measure the connections (see Gutman 1982; Reynolds and Gutman 1988).

Domain Knowledge and ISPR

Future research should also examine further the very important relationship between consumers' knowledge about a product and their ISPR for that product. One approach to studying the relationship between ISPR and domain knowledge is to use longitudinal experimental designs to investigate how both factors develop over time. For instance, researchers could manipulate consumers' domain knowledge and ISPR by experimentally controlling consumers' experiences with the product across various situations, and they could monitor the reciprocal processes of acquiring domain knowledge and developing ISPR. Results from such research could indicate how changing levels of domain knowledge and ISPR affect the types of information that individuals attend to and how that information is comprehended and subsequently used to elaborate product information. More broadly, such research could provide critical information about the reciprocal interactions between domain knowledge and ISPR during comprehension processing. Although conducting such research would be difficult, it has the potential of making substantive contributions to our theoretical understanding of the interrelationships among domain knowledge, ISPR, and felt involvement as well as producing improved measures of domain knowledge and ISPR.

An easier approach for future research would be to measure consumers' domain knowledge and ISPR (and felt involvement) in various natural settings (e.g., Richins and Bloch 1986). For instance, one might compare various measures of domain knowledge and ISPR for novice and expert consumers with differing levels of past experience with the product. Such cross-sectional, descriptive research would be useful in exploring the relationships between these constructs. Subsequently, experimental studies could be designed to test particular issues.

CONCLUSIONS

We have suggested that involvement is best conceptualized as a motivational state called felt involvement. Felt involvement is determined by the self-relevance of the goals and values that are activated in a situation and by the strength of their association with salient objects and actions in that situation. The cognitive representations of these factors, when activated in memory, are experienced by the consumer as feelings of personal relevance, importance, interest, and probably physiological arousal, which together constitute the motivational state of felt involvement. We note that perceptions of personal relevance or felt involvement always occur in the context of a specific situation. Thus, situational sources will influence the state of felt involvement, as will internal, enduring, intrinsic ones.

Our conceptual model proposes that felt involvement is a function of (1) SSPR, the situational sources of personal relevance derived from cues and contingencies in the immediate environment, and (2) ISPR, the intrinsic sources of personal relevance based on past experience and stored in memory. In any given situation, these sources combine to activate particular self-relevant meanings (goals and values) and general knowledge that create a level of felt involvement. Our model proposes that consumers' felt involvement is a motivational state that influences (1) the amount and direction of their attention, (2) the cognitive and physical effort they expend during comprehension, (3) the focus of their attention and comprehension processes, and (4) the depth and breadth of semantic elaboration during comprehension. The results supported these predictions. Further, the results suggest that the sources of felt involvement—ISPR and SSPR—and domain knowledge appear to have different roles and effects at different levels of attention and comprehension processing.

REFERENCES

Bettman, James R., Noel Capon, and Richard J. Lutz (1975), "Multiattribute Measurement Models and

